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Fluctuation-dissipation relations in the nonequilibrium critical dynamics of Ising models
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We investigate the relation between two-time multispin correlation and response functions in the nonequi-
librium critical dynamics of Ising models ind51 and d52 spatial dimensions. In these nonequilibrium
situations, the fluctuation-dissipation theorem~FDT! is not satisfied. We find FDT ‘‘violations’’ qualitatively
similar to those reported in various glassy materials, but quantitatively dependent on the chosen observable, in
contrast to the results obtained in infinite-range glass models. Nevertheless, all FDT violations can be under-
stood by considering separately the contributions from large wave vectors, which are at quasiequilibrium and
obey the FDT, and from small wave vectors where a generalized FDT holds with a nontrivial fluctuation-
dissipation ratioX`. In d51, we getX`5

1
2 for spin observables, which measure the orientation of domains,

while X`50 for observables that are sensitive to the domain-wall motion. Numerical simulations ind52
reveal a uniqueX`.0.34 for all observables. Measurement protocols forX` are discussed in detail. Our results
suggest that the definition of an effective temperatureTeff5T/X` for large length scales is generically possible
in nonequilibrium critical dynamics.

DOI: 10.1103/PhysRevE.68.016116 PACS number~s!: 05.70.Ln, 75.40.Gb, 75.40.Mg
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INTRODUCTION

Since the analytical solution of the nonequilibrium d
namics of the sphericalp-spin model in its low temperatur
phase@1#, many studies have focused on the properties
two-time nonequilibrium correlation and response functio
and the relationship between them@2,3#. In this paper, we
report on analytical and numerical investigations of seve
two-time multispin correlation and response functions in
nonequilibrium critical dynamics of Ising models ind51
andd52 spatial dimensions.

Our work is motivated by the following observation
Multipoint dynamical functions are standard objects in eq
librium statistical mechanics which reveal microscopic info
mation related to experimentally observable quantities.
nonequilibrated systems, however, the equilibrium relat
between response and correlation, i.e., the fluctuat
dissipation theorem~FDT!, is not satisfied. This evident ob
servation became important when it was realized that in
p-spin model@1# and more generally in infinite-range gla
models, ageneralizedFDT can be formulated@2–5#. This
amounts to the introduction of a fluctuation-dissipation ra
X or, alternatively, of an effective temperatureTeff5T/X for
the slow, nonequilibrated modes of the system@6#. The prop-
erties ofX andTeff have attracted much interest, since th
suggest that a generalized statistical mechanics can be
vised to deal with a broad class of nonequilibrium pheno
ena.

The generalized FDT is exact for infinite-range gla
models only. It is, however, tempting to apply the same c
cepts in other contexts such as glassy systems with fi
interaction range, as observed experimentally or simula
numerically. A further step is made when those ideas
transferred to other physical situations such as dom
growth processes@7,8# in nondisordered systems or the rh
ology of soft glassy materials@9,10#. Although one does no
1063-651X/2003/68~1!/016116~21!/$20.00 68 0161
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expect the results for infinite-range glass models to ap
exactly in all these nonequilibrium situations, it is wort
while to understand analogies and differences, and thu
push these ideas as far as possible. This is the philosoph
our paper where nonequilibrium dynamics at criticality
analyzed along the lines described above. Our results sug
that the concept of a generalized FDT is indeed usefu
criticality, and we describe in detail the form it takes as co
pared to the results obtained in infinite-range glass mode

The manuscript is organized as follows. The first sect
below reviews the results obtained for correlation and
sponse functions in ferromagnets and delineates the scop
the paper. In Sec. II, the 1d Ising model is studied analyti
cally atTc50. In Sec. III, numerical results for the 2d Ising
model atTc are presented. A summary and a physical disc
sion of the results can be found in the last section.

I. FDT AND FERROMAGNETS

A. Correlation and response functions

Pure ferromagnets are generally not described as gl
materials, which are loosely defined as systems with la
relaxation times. However, if a ferromagnet initially prepar
at high temperature is suddenly quenched to its low temp
ture ferromagnetic phase, its equilibration time diverges w
system size@11#. This is true also when the quench is pe
formed precisely to the critical point,T5Tc . In both cases
the system remains, in the thermodynamic limit, forever in
nonequilibrated, nonstationary state: it exhibits aging. The
fore, one can study physical situations in pure ferromagn
that are reminiscent of aging phenomena observed, e.g
spin glasses, polymers, or colloids. One is then led to as
the tools used in the glass literature are also useful to
scribe this type of nonequilibrium situation.

These tools include, in particular, two-time correlatio
and response functions. Consider two physical observa
©2003 The American Physical Society16-1
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A(t) andB(t). Their connected cross correlation is defin
by

C~ t,tw!5^A~ t !B~ tw!&2^A~ t !&^B~ tw!&, ~1!

while the conjugate response function is given by

R~ t,tw!5T
d^A~ t !&
dhB~ tw!

U
hB50

. ~2!

Here hB is the thermodynamically conjugate field to th
observableB; for later convenience we scale the response
T. Numerically or experimentally, it is often more convenie
to measure the integrated response function, or susceptib

x~ t,tw!5E
tw

t

dtR~ t,t!, ~3!

which gives the response to a small constant fieldhB
switched on at the ‘‘waiting time’’tw .

At equilibrium, correlation and response are tim
translation invariant and related by the FDT

R~ t,tw!5
]

]tw
C~ t,tw!. ~4!

In that case,̂ •••& in Eqs. ~1! and ~2! stands for the usua
ensemble average. If one follows instead the dynamics of
system after a sudden quench, the system is out of equ
rium and neither the time-translation invariance nor the F
is satisfied. Then̂ •••& is to be read as an average ov
initial conditions and any stochasticity in the dynamics.
infinite-range glass models, a generalized FDT is satisfie
the aging dynamics. The generalization amounts to the in
duction of a fluctuation-dissipation ratio~FDR!, X(t,tw),
through

2
]

]tw
x~ t,tw!5R~ t,tw!5X~ t,tw!

]

]tw
C~ t,tw!. ~5!

This definition becomes nontrivial because in the limit
long times t and tw , the FDR reduces to a function of
single variable only, namely, the correlation function,

X~ t,tw!→X„C~ t,tw!…, ~6!

where we retain the same symbol for the FDR and its lo
time limit. As in equilibrium, response and correlation a
then no longer independent quantities, although their r
tionship is now more complex.

It is now standard to study this generalized FDT via t
parametric representation, or ‘‘FD plot,’’ of the susceptibili
x as a function of the correlationC @4#. At equilibrium, one
has x(t,tw)5C(t,t)2C(t,tw). Hence, a plot ofx(t,tw)
againstC(t,t)2C(t,tw) gives a simple straight line of slop
1: this is the equilibrium FD plot. Out of equilibrium, Eq.~6!
implies

x~ t,tw!5E
C(t,tw)

C(t,t)

dxX~x!. ~7!
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Therefore, when Eq.~6! holds, the FDR can be obtaine
directly from the slope of the FD plot, which isX(C). Oth-
erwise, from Eq. ~5! a plot of x(t,tw) against C(t,t)
2C(t,tw), with t fixed andtw the curve parameter, will still
have slopeX(t,tw). Since the amplitude of correlation an
response functions can diverge or converge to zero fot
→` ~see below! it can be useful to use normalized quan

ties, plotting x̃(t,tw)[x(t,tw)/C(t,t) versus 12C̃(t,tw)

where C̃(t,tw)5C(t,tw)/C(t,t). Since the normalization
factors are independent oftw , the slope of the FD plot is
then still given byX. The normalization issue is less impo
tant when presenting numerical data, which are by const
tion obtained in a restricted time window where the amp
tudes of the dynamical quantities typically change on
slowly.

Appealingly, the FDR can also be interpreted as defin
an effective temperature,Teff(t,tw)[T/X(t,tw), replacing
the equilibrium temperatureT by an equivalent quantity ou
of equilibrium. Moreover, it is a general result that for th
caseA5B, where one considers the autocorrelation ofA and
the associated response,Teff is the temperature measured b
a thermometer coupled to the observableA at the appropriate
time scale@6#. As a direct corollary, this effective tempera
ture then satisfies the zeroth law of thermodynamics. Clea
however, the introduction of an effective temperature is
thermodynamic interest only ifTeff is actually independent o
the observablesA andB under consideration. This is indee
true for infinite-range glass models@6#, implying that al-
though the system is out of equilibrium it can still be d
scribed in thermodynamic terms, at the moderate cost of
troducing one extra parameter, namely, the effect
temperature@12#. Beyond infinite-range glass models, th
observable dependence of the effective temperature rem
largely an open question but has been discussed in deta
the context of trap models@13# and in a realistic numerica
model of a supercooled liquid@14#.

B. Ferromagnets at low temperature

For ferromagnets, two-time dynamical functions ha
been studied both for a quench to the low temperature ph
and to criticality, with most work to date focused on the fir
situation.

In the low temperature phase, the evolution of the syst
consists in the growth of ordered domains, with a typic
domain size,(t). Two-time quantities that have been tho
oughly studied are the spin-autocorrelation functi
Cs(t,tw)5^si(t)si(tw)&, wheresi(t) is the value of the spin
at site i at time t, and the conjugate response functio
Rs(t,tw)52(]/]tw)xs(t,tw)5d^si(t)&/dhi(tw), wherehi is
the magnetic field at sitei. In this case, the connected an
disconnected correlations coincide, since^si(t)&50 at all
stages of the coarsening process. From the analytical solu
of solvable models@15–19# and the simulation of more real
istic situations@7,8,20–22#, the behavior of these two quan
tities is now well known. For small time differences,Dt5t
2tw!tw , time-translation invariant behavior is observe
Cs(t,tw)'Cs(Dt), xs(t,tw)'xs(Dt), and the FDTxs(t,tw)
'Cs(t,t)2Cs(t,tw) is obeyed. This first regime is
6-2
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due to thermal fluctuations in the bulk of the domains, wh
are essentially equilibrium fluctuations. For larger time se
rations,Dt@tw , the fluctuations of the interfaces domina
the dynamical behavior. The reasonable hypothesis
coarsening is a self-similar process, in the sense that for l
times all dynamical functions depend on time only throu
the typical domain size,, implies the scaling form
Cs(t,tw)'Cs„,(t)/,(tw)… for the correlation function. The
contribution of the interfaces to the response function can
estimated@8# as a sum over all wave vectors,xs(t,tw)
'*1/,(tw)

1/a ddkk22 ,21(t). This expression results from th

fact that the response at timetw is dominated by large wave
vectors,k,(tw)@1, each wave vectork giving a contribu-
tion of the order ofk22. The factor,21(t) represents the
density of domain walls, anda is a UV cutoff given by the
lattice spacing. This reasoning implies for the long-time co
tribution to the susceptibility the scaling formxs(t,tw)
' f „,(tw)…xs„,(t)/,(tw)…, where the functionf (x) depends
on the dimensionalityd of space and is given byf (x)51/x
for d.2, f (x)5(ln x)/x for d52 and f (x)5 const for d
51. This scaling function has recently been revisited
Refs. @22,23#, with particular attention to the cased52
@24,25#.

From the above arguments, and ford.1, the parametric
plot of xs(t,tw) versusCs(t,tw)2Cs(t,tw) consists of an ini-
tial equilibrium part followed by an essentially horizont
section. In the latter the correlation function decays due
interface motion, while the response function hardly chan
because any contribution from the interfaces is suppres
by the f „,(tw)… prefactor. If a limiting FDRXs

` is defined
through

Xs
`5 lim

tw→`

lim
t→`

Xs~ t,tw!, ~8!

then it follows thatXs
`50 for d.1 in coarsening processe

For d51, on the other hand, bothxs and Cs are scaling
functions of,(t)/,(tw) and the parametric plot assumes
simple shape, implying thatXs

` could be any finite number
This is confirmed by the analytical solution of the dynam
of the Ising chain atT50 which shows thatXs

`5 1
2 @26,27#.

The factor1
2 was first derived in Ref.@28#.

C. Ferromagnets at the critical point

The nontrivial value ofXs
` for the Ising chain was inter

preted using the fact that ind51, the ordering temperatur
T50 coincides with the critical pointTc50 @26#. It was then
suggested that a nontrivialXs

` could be a generic feature o
critical points @29#. This is physically reasonable, since th
whole argument forXs

`50 in coarsening processes relies
the separation between bulk and interfaces; this is no lon
valid at the critical point where the bulk has the well-know
self-similar structure of ferromagnets at criticality.

From analytical and numerical studies, the behavior
two-time single-spin dynamical quantities is again well u
derstood, as briefly reviewed in Ref.@30#. Physically, the
nonequilibrium dynamics following a quench to the critic
point consists in the growth of the dynamical correlati
01611
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length,j(t)'t1/z, wherez is the dynamical critical exponen
@31#. Critical fluctuations of large wave vectors,kj(t)@1,
are almost equilibrated, while those with small wave vecto
kj(t)!1, still retain their nonequilibrium initial condition
This separation leads to the scaling formsCs(t,tw)
'Dt22b/nzCs„j(t)/j(tw)… and xs(t,tw)'Dt22b/nzxs„j(t)/
j(tw)…, whereb and n are the standard critical exponent
This can be interpreted as follows. For short-time differen
Dt!tw , equilibrated fluctuations with largek dominate and
dynamical functions assume their standard equilibri
power-law decay. The dynamics at large time separationDt
@tw , on the other hand, is dominated by the growth of t
dynamic correlation length and leads to thej(t)/j(tw) scal-
ing. This in turn implies that, beyond the initial equilibrium
part, the FD plot will again assume a nontrivial shape, as
the Ising chain. The striking similarity of these results wi
the aging dynamics of finite dimensional spin glasses w
noted in Refs.@29,32#.

The reasoning above confirms that at criticality,Xs
` can

take any finite value, in contrast with theXs
`50 obtained in

the low temperature phase. It was further argued thatXs
`

should be a new universal quantity at criticality@29#. As
such, it can be computed using standard renormaliza
group procedures, and this program has recently been sta
for various models@33–35#. The value ofXs

` is known ex-
actly for the Ising chain@26–28#, where Xs

`5 1
2 , for the

spherical ferromagnetic model@29#, whereXs
`5 1

2 for d>4
andXs

`5 1
3 for d53, and for the Gaussian model@15# where

Xs
`5 1

2 . An estimate is known for modelA at second order in
42d @33#, to first order inA42d for the diluted Ising model
@34#, and to first order in 42d in modelC @35#.

D. Motivations for this work

This short review of known results in the nonequilibriu
dynamics of pure ferromagnets shows that much research
been done on the subject. So, why another paper?

First of all, the relevance of the notion of an effectiv
temperature at criticality can be questioned because the
plots for the spin dynamic functions do not assume a sim
linear shape with a well-defined slope, as happens in the
temperature phase. This is related to the fact that at
temperatures the decay of correlation functions occurs
two well-separated time scales. Each has its own associ
effective temperature, a fact reminiscent of the physics
structural glasses. At criticality, on the other hand, one ha
continuum of time scales associated with different wave v
tors, t(k);k2z. Moreover, for finitek the equilibration time
is finite, meaning that the number of modes that are still
of equilibrium decreases as time increases. This suggests
an effective temperature could be relevant only when con
ering thek→0 limit, a point which our analysis will clarify.

Second, we mentioned the important issue of the obs
able dependence of a generalized FDT. This issue rem
completely open since the studies cited above focused ex
sively on a single FD relation, for the spin autocorrelati
and associated response. In order to get a more comp
theoretical understanding, it is crucial to understand if ot
6-3
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observables give the same results, and if not, how they
related.

A third motivation for the study of higher-order correla
tion functions comes from the observation that the dynam
of coarsening models is dominated by the motion of to
logical defects. For Ising models, these are domain walls,
local density of which is given by the ‘‘defect’’ observab
si(t)sj (t), where (i , j ) are nearest neighbors. Defect dynam
cal functions have recently been studied in the contex
kinetically constrained Ising models@36#, and the FD rela-
tions that arose showed interesting and unexpected feat

For an Ising model, there are at least four ‘‘natura
FD relations, involving, respectively, the spin autoco
relation Cs(t,tw), the magnetization density m(t)
correlation, Cm(t,tw)5^m(t)m(tw)&, the defect auto-
correlation

Cd~ t,tw!5^si~ t !sj~ t !si~ tw!sj~ tw!&

2^si~ t !sj~ t !&^si~ tw!sj~ tw!&

with ( i , j ) nearest neighbors, and the energy densitye(t)
correlation Ce(t,tw)5^e(t)e(tw)&2^e(t)&^e(tw)&. Note
again that connected and disconnected correlation funct
coincide for the magnetization; this is not the case
Cd(t,tw) andCe(t,tw). In the 1d case, we will also investi-
gate two-time functions which smoothly interpolate betwe
incoherent, local functions~spin or defect! and coherent, glo-
bal ones~magnetization, energy!, and discuss the case o
correlation functions of higher order. In the 2d case, we will
stick to the four quantities listed above.

II. THE 1 d ISING MODEL

In this section, we study the nonequilibrium dynamics
the Glauber-Ising chain with the Hamiltonian

H52(
i

sisi 11 , ~9!

where thesi ( i 51, . . . ,N) areN Ising spins subject to peri
odic boundary conditions. Glauber dynamics consists in e
spin si flipping with rate 1

2 @12 1
2 gsi(si 211si 11)#, where

g5tanh(2/T). Equivalently, the flip rates can be written a
1/@11exp(DH/T)#, whereDH is the change in the Hamil
tonian caused by the flip. We use this second expressio
extend the definition of the rates to the case where
Hamiltonian includes field terms such as2( ihisi , follow-
ing, e.g., Ref.@26#. Glauber’s original prescription treated th
effects of external fields separately@37# but is less standard
today.

We focus on the evolution of arbitrary two-time spin a
defect correlation and response functions in the thermo
namic limit N→`, after a quench from equilibrium atT
5` to T→0. As explained above, although a variety
aspects of the associated coarsening dynamics have alr
been studied@11,38#, results on the nonequilibrium FDT vio
lation so far are restricted to the spin autocorrelation a
response functions@26,27#. In Sec. II A, we introduce the
more general class of spin and defect observables we in
01611
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tigate. We briefly present the main result of our method
derive multispin two-time correlation and response fun
tions, as developed in Ref.@39#, and summarize the approac
used to extract from this the quantities of interest here. O
results for spin dynamical functions are then given in S
II B—a preliminary account of which has appeared R
@41#—and for defect functions in Sec. II C. In Sec. II D, w
discuss the physical aspects of our results for the 1d Ising
model.

A. General strategy for the calculations

We consider the following spin and defect observablesOs
andOd :

Os5(
i

e isi and Od5(
i

e isisi 11 . ~10!

In both cases,e i are quenched random variables with ze
mean @e i #50 and translation invariant covariancesqi 2 j
5@e ie j #; here@•# denotes the average over the distributi
of e. Without loss of generality, we setq051. We define the
corresponding connected two-time correlation functions

C~ t,tw!5
1

N
@^Os~ t !Os~ tw!&#

and

C~ t,tw!5
1

N
@^Od~ t !Od~ tw!&2^Od~ t !&^Od~ tw!&#, ~11!

for spins and defects, respectively, and the responses

R~ t,tw!5
T

N Fd^Os~ t !&
dhs~ tw! GU

hs50

and

R~ t,tw!5
T

N Fd^Od~ t !&
dhd~ tw! GU

hd50

, ~12!

wherehs andhd are thermodynamically conjugate toOs and
Od , respectively. All functions are scaled byN to get quan-
tities of the order of unity. It is easy to show that, in th
thermodynamic limitN→`, Eqs.~11! and~12! become@39#

C~ t,tw!5(
n

qnCn~ t,tw! and R~ t,tw!5(
n

qnRn~ t,tw!.

~13!

Here we have used translational invariance~which holds for
our quench from an equilibrium state! to define the distance
dependent correlation functions

Cj 2 i~ t,tw!5^si~ t !sj~ tw!& ~spins!,

Cj 2 i~ t,tw!5^si~ t !si 11~ t !sj~ tw!sj 11~ tw!&2^si~ t !si 11~ t !&

3^sj~ tw!sj 11~ tw!& ~defects!, ~14!
6-4
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and associated responses

Rj 2 i~ t,tw!5T
d^si~ t !&
dhj~ tw!

U
hj 50

~spins!

and

Rj 2 i~ t,tw!5T
d^si~ t !si 11~ t !&

dhj , j 11~ tw!
U

hj , j 1150

~defects!.

~15!

As usual,hj and hj , j 11 are conjugate tosj and sjsj 11, re-
spectively. Translation invariance also shows that in the th
modynamic limitN→`, expressions~11! and ~12! are self-
averaging, i.e., independent of the particular realization
the disorder variablese i .

Analysis of the nonequilibrium FDR for the observabl
Os,Od thus requires knowledge of all spin and defect cor
lation and response functions~14! and~15!. We have tackled
this problem in Ref.@39# where we give closed, exact solu
tions for generic two-time multispin correlation and respon
functions in the Glauber-Ising chain after a quench fro
an arbitrary equilibrium state at temperatureTi.0
to any T>0. The approach is based on the hierarchy
differential equations @40# for the spin correlations
^si 1

(t)si 2
(t)•••si k

(t)&, which we managed to solveexplic-

itly for arbitrary initial conditions ^si 1
(0)•••si k

(0)&.
Broadly, our technique is to first solve the different levels
the hierarchy separately; each level corresponds to the c
lation functions of a given order. The links to lower leve
are then incorporated as inhomogeneities. The details are
yond the scope of the present paper but can be found in
@39#; the key result reads

^si 1
~ t !•••si k

~ t !&5(
l 50

bk/2c
(

pPP( l ,k)
~21!p

3 )
l51

l

Hi p(2l)2 i p(2l21)
~2t !

3F ( i p(2l 11) , . . . ,i p(k))
(k22l ) ~ t !, ~16!
t
x-
-

01611
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F i
(k)~ t !5 (

j 1,••• j k
S (

pPS(k)
~21!p )

l51

k

e2tI i l2 j p(l)
~gt !D

3^sj 1
~0!•••sj k

~0!&. ~17!

Herep denotes permutations and (21)p their sign;S(k) is
the set of all permutations of$1,2, . . . ,k% while P( l ,k) is the
set of permutations corresponding to choosingl ordered pairs
from the numbers 1,2, . . . ,k and keeping the remainingk
22l numbers in ascending order. Explicit expressions for
functions I n(x) and Hn(x) are given in Ref.@39# @for N
→` the I n(x) are the modified Bessel functions, see Appe
dix A#. We also show in Ref.@39# that the evolution of two-
time multispin correlation and response functions is go
erned by an identical hierarchy of differential equations,
that these quantities can be obtained from Eqs.~16! and~17!
if we substitute the corresponding equal-time initial con
tions in Eq. ~17!. The latter are just equal-time
correlations—or can be expressed in terms of these for
response functions by generalizing the method develope
Ref. @26#—which we know already. For a quench from a
equilibrium state, this leads to explicit results for the tw
time multispin functions. As simple examples, we state
Ref. @39# the spin and defect functions~14! and ~15! for the
quench fromTi5` to T→0 considered here. For spins, on
finds

Cn~ t,tw!5e2(t1tw)H I n~ t1tw!1E
0

2tw
dt I n~ t1tw2t!

3@ I 01I 1#~t!J , ~18!

xn~ t,tw!5 1
2 e2tE

tw

t

dt e2tI n~ t2t!@ I 012I 11I 2#~2t!,

~19!

and for defects
Cn~ t,tw!5 1
2 e2(t1tw)@ I n212I n11#~ t1tw!E

t2tw

t1tw
dte2t@ I n212I n11#~t!1e22t$I n~ t2tw!@ I n2112I n1I n11#~ t1tw!

2e22tw@~ I n211I n!~ I n1I n11!#~ t1tw!%, ~20!

xn~ t,tw!5e22t$2dn,0@ I 01I 1#~2t !2I n~ t2tw!@ I n2112I n1I n11#~ t1tw!%. ~21!
g

Here and below the shorthand@ . . . #(x) is used to indicate
that all functions enclosed in the square brackets have
same argumentx; dn,0 is the standard Kronecker delta. E
pressions~19! and~21! for the susceptibilities are more con
he
venient than those for the responsesRn(t,tw)
52(]/]tw)xn(t,tw) and so we mostly base the followin
discussion on them. We note that while Eqs.~18! and ~19!
have already been given in various forms, e.g., Ref.@26#, we
6-5
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are not aware of any equivalent in the literature of Eqs.~20!
and~21!. The results for the spin response functions given
Ref. @27# differ from ours because these authors used Gla
er’s original prescription for the spin flip rates@37#; at long
times and lowT the results become equivalent, however.

Equations~18!–~21! will form the basis for our analysis
of the FDR in the 1d Ising chain in Secs. II B and II C. Fo
now we return to the observablesOs, Od and, in particular,
the choice of the field covariancesqn . According to Eq.~13!,
we obtain spin and defect autocorrelation and response f
tions by choosing uncorrelated random fieldse i , i.e., qn
5dn,0 . We abbreviate the notation in this case to that use
the Introduction and writeCs(t,tw) for spin andCd(t,tw) for
defect autocorrelations and similarlyxs(t,tw), xd(t,tw) for
susceptibilities. Uniform covariancesqn51, on the other
hand, yield full summations over all cross-correlation a
response functions in Eq.~13!. So Os and Od produce just
the magnetization and energy, respectively; we thus use
obvious shorthandsCm(t,tw), xm(t,tw), and Ce(t,tw),
xe(t,tw) for this case. It will turn out that the local (qn
5dn,0) and global (qn51) FDT relations for spin and defec
observables are very different. Therefore we also investig
intermediate choices ofqn that interpolate between these tw
extremes. Two classes of covariances can be distinguis
We may interpolate betweenqn5dn,0 andqn51 by a family
of covariances that satisfies(nuqnu,` for any nonuniform
choice ofqn ; we call the corresponding fieldse i short-range
correlated. Alternatively, we can interpolate such th
(nuqnu5` as long as the fields are not completely uncor
lated; we refer to such fields as infinite-range correlated
either case, the analysis of the FDR for the correlation
response functions of the associated observable requires
evaluate the infinite sums in Eq.~13!. This can be done con
veniently in terms of the Fourier transformsq(k)5F$qn%,
C(k;t,tw)5F$Cn(t,tw)%, and x(k;t,tw)5F$xn(t,tw)%,
where

F$ f n%5(
n

f ne2 ink and F 21$ f ~k!%5E
2p

p dk

2p
f ~k!eink.

~22!

In Appendix B, we state the Fourier transforms of Eqs.~18!–
~21!, in terms of which Eq.~13! becomes

C~ t,tw!5E
2p

p dk

2p
q~k!C~k;t,tw!

and

x~ t,tw!5E
2p

p dk

2p
q~k!x~k;t,tw!. ~23!

An explicit example of a family of short-range correlate
fields, parametrized bya.0, is given by the Lorentzian co
variances

qL,n5
a2

a21n2
⇔qL~k!5

ap

sinhap
cosha~p2uku!. ~24!
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Transform ~24! can be found in any table of the Fourie
transforms. Equation~24! indeed defines short-range corr
lated fields: since qL,n.0 the criterion becomesNc
[(nqL,n,` which is satisfied since Nc5qL(0)
5ap cothap. By varying a we can also smoothly tune ou
observables between local (qL,n→dn,0 asa→0) and global
(qL,n→1 for a→`) ones. We denote the corresponding c
relations and susceptibilities byCL(t,tw) and xL(t,tw). An
example of covariances that yield infinite-range correla
fields is

qP,n5~21!n

G2S 11a

2 D
GS 11a

2
2nDGS 11a

2
1nD

⇔qP~k!5

G2S 11a

2 D
212aG~a!

Usin
k

2U
a21

, ~25!

where 0,a,1 andG(x) is the Gamma function@42#. It is
clear from Eq.~25! that qP,n is even inn and qP,051. We
show in Appendix C that fora→1 we getqP,n5dn,0 while
a→0 givesqP,n51. We also prove there thatqP,n decreases
monotonically asunu increases, decaying asymptotically as
power law qP,n;unu2a, and that indeedF 21$qP(k)%
5qP,n . The reverse transformF$qP,n% does not converge in
the usual sense, but this is not necessary for the equival
of Eqs. ~13! and ~23!. So Eq.~25! again allows us to inter-
polate smoothly between local and global observables, bu
such a way that(nqP,n5` for any aP@0,1@ . The correla-
tions and susceptibilities for the observables defined by fie
e i with the power-law covariances~25! are denoted by
CP(t,tw) andxP(t,tw) below.

B. Spin observables

1. Random field: Incoherent functions

The FDT violation for the spin autocorrelation and r
sponse functions has already been studied in detail in R
@26,27#. In particular, it was shown that the FD plot ap
proaches a nontrivial limit curve in the aging regime, wi
Xs

`5 1
2 . We can easily recover the existing results f

Cs(t,tw),xs(t,tw) from our exact solutions~18! and ~19! by
settingn50. It is useful to focus on the aging limit. For
mally, this is an asymptotic expansion in the limitt,tw→`
with e<tw /t<12d fixed ande,d.0, to ensure thatt,tw ,
andDt all diverge and are of the same order. In this limit, t
asymptotic expansion~A3! for the modified Bessel function
yields immediately

Cs~ t,tw!;
2

p
arcsinA 2tw

t1tw
, ~26!

xs~ t,tw!;
A2

p
arccosAtw

t
. ~27!
6-6
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Here and below, the ‘‘; ’’ sign denotes results which ar
asymptotically exact in the aging limit. The limit FD plo
corresponding to Eqs.~26! and ~27! is contained in Fig. 2
below and the associated FDR is a function of the time ra
tw /t only,

Xs~ t,tw!;
t1tw

2t
. ~28!

It shows a continuous crossover fromXs(t,tw)51 for Dt
!tw to Xs(t,tw)5Xs

`5 1
2 for Dt@tw . We note that the aging

expansion of the spin correlations and susceptibilities~18!
and~19! is dominated by the leading term of the asympto
series~A3! for the modified Bessel functions, which is ind
pendent of the ordern. Therefore, Eqs.~26! and~27! in fact
apply to all finite-distance spin cross correlations and susc
tibilities Cn(t,tw), xn(t,tw). Consequently, the latter produc
the same limiting FD plot and FDR~28! as forn50.

2. Uniform field: Coherent functions

As described, the uniform field effectively allows us
study the FDR for the magnetization. The corresponding c
relation and susceptibility are most conveniently obtain
from the Fourier transforms~B1! and ~B2! by settingk50;
the time integrals appearing inC(k;t,tw), x(k;t,tw) can then
be solved. One finds

Cm~ t,tw!5e22tw$I 0~2tw!14tw@ I 01I 1#~2tw!%, ~29!

Rm~ t,tw!5 1
2 e22tw@ I 012I 11I 2#~2tw!. ~30!

We have given the responseR52]x/]tw here rather than
the susceptibility because it has a simpler form. Note t
both the correlation and response functions~29! and~30! are
independent oft. This can be understood from the fact th
for T50 the magnetizationm5(1/N)( isi performs a ran-
dom walk with step size62/N and a time-dependent rat
1
2 Nc, where c is the concentration of domain walls. Th
latter can be obtained explicitly from Eq.~18! by settingt
5tw and n51, since C1(tw ,tw)5^si(tw)si 11(tw)&51
22c(tw). This gives@43#

c~ tw!5 1
2 e22tw@ I 01I 1#~2tw!. ~31!

Now, since the random walk ofm is unbiased,Cm(t,tw)
5N^m(t)m(tw)&5Cm(tw ,tw) follows immediately. Also,
Cm(tw ,tw) will grow with rate 2ND(tw), where D

5(2/N)2 1
2 Nc52c/N is the diffusion constant. One shou

thus have]Cm(tw ,tw)/]tw54c(tw), and from Eqs.~29! and
~31! one verifies that this is indeed the case. Similar ar
ments apply to the responseRm(t,tw). Brief application of a
field at tw biases the domain-wall motion and hence the r
dom walk ofm; thereafter the random walk is again unbias
and so the response must bet independent. The momentar
bias in the random-walk rates contains the domain-wall c
centrationc(tw) as an overall factor, and consistent with th
expectation one getsRm(t,tw);2c(tw) asymptotically.
01611
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Since bothCm(t,tw) and Rm(t,tw) are functions oftw
only, this also applies to the FDR

Xm~ tw!5
@ I 012I 11I 2#~2tw!

4@ I 01I 1#~2tw!
, ~32!

which crosses over from the initial valueXm(0)5 1
4 to 1

2 on
an O(1) time scale. So, apart from a transient after t
quench, we measureXm(tw)5 1

2 for all t>tw@1; in particu-
lar, the limiting valueXm(tw);Xm

`5Xs
`51/2 in the aging

regime is identical to that for the incoherent spin obse
ables. Note that there is no quasiequilibrium regime w
Xm51 for Dt!tw . The corresponding FD plot converges
a straight line of slope12 ~see Fig. 2 below!.

3. Short-range correlated field

Next we investigate the effect of short-range correlatio
in the random fieldse i on the FDR. The correlations an
susceptibilities of the corresponding observables may be
tained either from a real-space summation~13! or an integra-
tion in the Fourier representation~23!. Using the latter, we
note first that the short-range criterion(nuqnu,` for the
covariances implies thatq(k)5F$qn%5(nqne2 ink is a con-
tinuous function. The Fourier transformsC(k;t,tw),
x(k;t,tw), on the other hand, satisfy

C~k;t,tw!

Cs~ t,tw!
→2pd̃~k! and

x~k;t,tw!

xs~ t,tw!
→2pd̃~k! ~33!

in the aging limit, whered̃(•) is a 2p-periodic version of the
ordinary Dirac delta. The normalizations of the right-ha
sides of Eq.~33! are clear, sinceCs(t,tw), for instance, is
given by the Fourier integral~22! over C(k;t,tw) for n50.
Also, sinceCs(t,tw) andxs(t,tw) areO(1) functions oftw /t
in the aging limit, whileC(k;t,tw),x(k;t,tw) vanish in the
same limit for anyk that is not a multiple of 2p, Eq. ~33!
follows. This in turn implies that for any short-range corr
lated field,

C~ t,tw!;NcCs~ t,tw! and x~ t,tw!;Ncxs~ t,tw! ~34!

provided thatNc5q(0)5(nqn , which estimates the numbe
of lattice sites over which field correlations extend, is no
zero. So in the aging limit, the correlations and susceptib
ties are ultimately just proportional to Eqs.~26! and~27! and
hence yield the same FDR and FD plot as the local s
functions. This statement can equivalently be made in r
space, based on the convergence of the seriesqn and the fact
that all finite-distance cross-correlation and response fu
tions behave asymptotically as Eqs.~26! and ~27!.

At finite times, however, we find a crossover between t
dynamical regimes. A scaling analysis shows that the pe
in C(k;t,tw) and x(k;t,tw) at k50 have widthst21/2 and
Dt21/2, respectively. Correspondingly, we have growin
length scales in real space. These are,C't1/2 for correla-
tions, corresponding to the typical domain size, but,x

'Dt1/2 for the response which reflects the fact that pertur
6-7
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tions spread diffusively. When,C ,,x@Nc , one has an effec
tively local observable and we are in the asymptotic regi
~34!. If, however, ,C ,,x!Nc , the fieldse i are correlated
over distances much longer than the dynamical length sca
giving an effectively uniform field. One thus expects to g
an FD plot similar to that obtained for the magnetizatio
The illustration of the crossover in Fig. 1, obtained by n
merical integration of Eq.~23!, shows that this is indeed th
case.

4. Infinite-range correlated field

For infinite-range correlated fields, one cannot use sim
scaling arguments, since the correlations and susceptibil
contain contributions from all length scales. For the pow
law covariances~25! introduced above, this is reflected in th
singularity of qP(k) at k50. Therefore we have to analyz
the full expressions forCP(t,tw) and xP(t,tw) that follow
from Eq. ~23! after substitution ofqP(k), C(k;t,tw), and
x(k;t,tw). Fortunately, for the particular choice ofqP(k) the
results may be expressed in terms of single integrals of
form

CP~ t,tw!5e22(t1tw)H 1F1S 1

2
,
11a

2
;2~ t1tw! D

1E
0

2tw
dtet

1F1S 1

2
,
11a

2
;2~ t1tw2t! D

3@ I 01I 1#~t!J , ~35!
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xP~ t,tw!5
1

2
e22tE

tw

t

dt 1F1S 1

2
,
11a

2
;2~ t2t! D

3@ I 012I 11I 2#~2t!, ~36!

where 1F1(a,g;z) is the confluent hypergeometric functio
@42#. Equations~35! and ~36! are exact and can be used
study the FD plots and the FDR numerically. However, in t
aging limit, asymptotic expansions may be substituted for
nonelementary functions and significant simplifications
possible. One finds

CP~ t,tw!;
2(12a)/2

p
GS 11a

2 D ~ t1tw!(12a)/2

3BS 1

2
,12

a

2
;

2tw

t1tw
D , ~37!

xP~ t,tw!;
22a/2

p
GS 11a

2 D t (12a)/2FBS 1

2
,12

a

2 D
2BS 1

2
,12

a

2
;
tw

t D G , ~38!

where B(p,q;x) is the incomplete beta functionB(p,q;x)
5*0

xduup21(12u)q21 and B(p,q)5B(p,q;1) is the com-
plete one@42#. In the random-field limit,a→1, we recover
expansions~26! and ~27! for the incoherent functions sinc
n

FIG. 1. Normalized FD plot~left! and the corresponding FDR vstw /t ~right! for a random field with Lorentzian covariances~24! with
a5103, correlated overNc5ap cothap'ap sites. In the FD plot,t is fixed for each curve and varies over the range 100,101, . . . ,1010

~bottom to top!. The lines first converge towards the straight line with slope1
2 corresponding to a coherent observable~the magnetization!

but eventually, fort>105, cross over to the limit plot for uncorrelated fields. This behavior is also reflected in the evolution ofXL(t,tw).
There, however, we have the freedom to fix eithert or tw . The plot shows the case of fixedtw , which is more convenient for compariso
with simulations, fortw5100, . . . ,1010 ~bottom to top!.
6-8
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FIG. 2. Normalized FD plots~left! and the corresponding FDR vstw /t ~right! in the aging limitt,tw→`. The bottom curves in both plots
are for the magnetization~Sec. II B 2! and coincide with the uniform field limita→0 of the power-law field covariances. The intermedia
curves are for power laws~Sec. II B 4! with exponentsa50.2,0.4,0.6,0.8~bottom to top!. The top curves represent the random-field lim
a→1 for power laws, and apply also to any short-range correlated field~Sec. II B 3! with NcÞ0 or, in the extreme case, the incohere
functions of Sec. II B 1.
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→0 can be shown to coincide, usingB( 1
2 ,1;x)52Ax, with

the asymptotic expansions of Eqs.~29! and ~30! for the co-
herent functions. So the power-law covariances~25! indeed
allow us to interpolate between the coherent and incohe
observables. For intermediate exponents 0,a,1, the fluc-
tuations in the observableOs grow astw

(12a)/2 and the two-
time correlation~37! has a plateau at a corresponding va
for Dt!tw ; for Dt@tw it decays astw

(12a)/2(tw /Dt)a/2. For
the susceptibility, we deduce from Eq.~38! a
Dt (12a)/2(Dt/tw)1/2 growth for Dt!tw that crosses over to
Dt (12a)/2 for Dt@tw . Figure 2 shows exact FD limit plot
that follow from Eqs.~37! and ~38!. The associated FDR
may be obtained from Eqs.~37! and ~38! as

XP~ t,tw!;H 2t

t1tw
1

12a

2
A 2tw

t1tw
S t2tw

t1tw
D a/2

3BS 1

2
,12

a

2
;

2tw

t1tw
D J 21

. ~39!

In principle, one should first differentiate Eqs.~35!, ~36! to
obtain RP(t,tw) and (]/]tw)CP(t,tw) and then perform the
aging expansion, but this turns out to give the same res
Equation ~39! is a function of tw /t only and interpolates
between the FDR~28! for the local spin observables (a
→1) and the constantXm

`5 1
2 for the magnetization (a

→0). Plots ofXP(t,tw) for various powersa are also shown
in Fig. 2. It is remarkable that the FDR again crosses o
from XP(t,tw)51 for Dt!tw to XP

`5 1
2 for Dt@tw , indepen-

dently of the power-law exponenta.
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5. Harmonically correlated fields and X`

The explicit examples given in Secs. II B 1–II B 4 su
gest thatX`5 1

2 is a generic feature for the spin observab
Os defined in Eq.~10!. To show that this is indeed true, w
start from the fact that for a general observableOs the cor-
relation and susceptibility—and hence (]/]tw)C(t,tw) and
R(t,tw)—may be written in form~23!. By introducing a gen-
eralized FDT for the Fourier modes,

R~k;t,tw!5X~k;t,tw!
]

]tw
C~k;t,tw!, ~40!

we may expressR(k;t,tw) via Eq. ~40! and thereby obtain
the following representation for the FDRX(t,tw) associated
with a generic spin observableOs:

X~ t,tw!5

E
2p

p dk

2p
X~k;t,tw!q~k!

]

]tw
C~k;t,tw!

E
2p

p dk

2p
q~k!

]

]tw
C~k;t,tw!

. ~41!

This means thatX(t,tw) may be considered as the avera
of X(k;t,tw) over the normalized distribution o
q(k)(]/]tw)C(k;t,tw) on kP@2p,p#. The FDR for Fourier
modes follows from Eq.~40! and expressions~B1! and~B2!
for C(k;t,tw),x(k;t,tw) as
6-9
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X~k;tw!5
@ I 012I 11I 2#~2tw!

4@ I 01I 1#~2tw!22~12cosk!H e2twcosk1E
0

2tw
dte(2tw2t)cosk@ I 01I 1#~t!J , ~42!
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and is a function oftw andk only. Fork50, Eq.~42! reduces
to the FDR for the magnetizationXm(tw) ~32! and hence
X(0;tw)' 1

2 for tw@1. A scaling analysis of Eq.~42! shows
that for uku!p and tw@1 we getX(k;tw)'X(k2tw) with
X(k2tw)' 1

2 for k2tw!1 andX(k2tw)'1 whenk2tw@1. So
Eq. ~42! reflects the successive equilibration of increas
length scales.

Now we can return to the FDR~41! for the observable
Os. For the magnetization—being the cohere
observable—we haveq(k)52pd̃(k) and Eq.~41! reduces to
the trivial identity Xm(tw)5X(0;tw). In physical terms, by
selecting the coherent observable we only measure the
associated with the infinite length scale. For other spin
servables, being characterized by the functionq(k), the FDR
X(t,tw) contains contributions from all length scales. For t
long-time limit X`, however, the situation simplifies becau
(]/]tw)C(k;t,tw) develops an infinitely sharp peak atk50
as t→`. This can be verified by a scaling analysis of E
~B1!. For sufficiently well-behaved functionsq(k), the nor-
malized version of the distributionq(k)(]/]tw)C(k;t,tw)
thus becomes a realization ofd̃(k) and we getX(t,tw)
→X(0;tw) ast→`. Taking the limittw→` then shows that
X`5 1

2 , as claimed. So for a generic spin observable,X`

again just gives the FDR associated with the infinite len
scale. The only exception occurs when this contribution
explicitly suppressed. An example of the latter case would
harmonically correlated fields,qn5cosnp with 0,p,p:
for such observablesX(t,tw)5X(p;tw) and henceX`51.

C. Defect observables

1. Random field: Incoherent functions

The defect observableOd given in Eq.~10! with random,
uncorrelated fieldse i allows us to study the FDT violation
for local defect correlations and susceptibilities. These
low from Eqs.~20! and ~21! by settingn50, giving

Cd~ t,tw!52e22tI 0~ t2tw!@ I 01I 1#~ t1tw!2e22(t1tw)

3@ I 01I 1#2~ t1tw!, ~43!

xd~ t,tw!52e22t$@ I 01I 1#~2t !2I 0~ t2tw!@ I 01I 1#~ t1tw!%.

~44!

These results can be written in a more physically intuit
way in terms of the concentration of domain wallsc(t), Eq.
~31!, and the return probabilitypr(t)5e2tI 0(t) of a
continuous-time random walker on a discrete, on
dimensional lattice@44#. Expressing all time dependencies
Eq. ~43! and ~44! via c(t) andpr(t) yields the exact identi-
ties
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Cd~ t,tw!54cS t1tw

2 D Fpr~ t2tw!2cS t1tw

2 D G , ~45!

xd~ t,tw!54Fc~ t !2pr~ t2tw!cS t1tw

2 D G . ~46!

The fact that we find random-walk-related quantities do
not come as a surprise given that there is an exact map
of zero-temperature Glauber dynamics in the Ising chain
diffusion-limited pair-annihilation~DLPA! process@45#. The
mapping follows by assigning to each bond (i ,i 11) the
‘‘particle’’ occupation number bi5

1
2 (12sisi 11)P$0,1%

which signals the presence or absence of a domain w
Glauber dynamics for the spins corresponds to indepen
random walks for the particles and coalescence of dom
of aligned spins yields particle pair annihilation.

It follows from definition ~14! of the defect autocorrela
tion thatCd(t,tw)54@^bi(t)bi(tw)&2^bi(t)&^bi(tw)&# in fact
also describes the particle autocorrelation in the DLPA p
cess. We note that Eq.~45! is a nontrivial result. Assuming a
in Ref. @36# that the autocorrelation of the fractionc(t) of
particles that still exist at timet is given by pr(t2tw) and
that these particles are uncorrelated with the fractionc(tw)
2c(t) of particles that have disappeared via annihilatio
one would conclude ^bi(t)bi(tw)&5c(t)pr(t2tw)
1c(t)@c(tw)2c(t)# and henceCd(t,tw)54c(t)@pr(t2tw)
2c(t)#. This obviously differs from the exact solution~45!.
As an approximation it holds forDt!tw , but breaks down
for Dt@tw where Eq. ~45! yields Cd(t,tw)'2tw /(pDt2)
whereas the approximation gives Cd(t,tw)'(A2
21)/(pDt). This shows that two-time correlations i
Cd(t,tw) build up via a rather subtle mechanism, the exp
nation of which in terms of the DLPA would probably re
quire knowledge of the interparticle~i.e., domain size! dis-
tribution. Similarly, it appears that result~46! cannot be
obtained in a straightforward way.

Now we turn to the dynamics of Cd(t,tw),
xd(t,tw)—examples of which are shown in Fig. 3—as give
by Eqs. ~45! and ~46!. The equal-time value ofCd(tw ,tw)
54c(tw)@12c(tw)#'4c(tw)'2/Aptw for tw@1 decreases
with tw , reflecting the decreasing number of particles in t
DLPA process~or domain walls in the spin chain!. In the
regime Dt!tw , the two-time correlation Cd(t,tw)
'4c(tw)pr(Dt) drops from its initial value due to the
random-walk motion of the particles around their initial p
sitions attw . In the aging limit of largeDt and tw , one has
the expansion Cd(t,tw);2/(pAt1tw)(1/At2tw

21/At1tw). This crosses over from Cd(t,tw)
'2/(pA2Dttw) for Dt!tw , where it connects smoothly to
the initial drop forDt of O(1), sincepr(Dt)'1/A2pDt for
6-10



FLUCTUATION-DISSIPATION RELATIONS IN THE . . . PHYSICAL REVIEW E 68, 016116 ~2003!
FIG. 3. Defect autocorrelation~left! and susceptibility~right! vs Dt for waiting timestw5101,102, . . . ,106. Increasing waiting times
corresponds to decreasing values in the plot for smallDt.
s

s
g

us

-

e.

s-
. In

s
an

hat
-

ntu-

of

la-
e. A
large Dt, to Cd(t,tw)'2tw /(pDt2) for Dt@tw . The inte-
grated responsexd(t,tw) is nonmonotonic inDt and in-
creases on anO(1) time scale inDt from its initial value
xd(tw ,tw)50 to a plateauxd(t,tw)'2/Aptw for Dt!tw ac-
cording toxd(t,tw)'4c(tw)@12pr(t2tw)#. This crossover
is clear from the spin-chain dynamics: the perturbation as
ciated with xd(t,tw) is dH52hsisi 11 which simply in-
creases the coupling between sitesi, i 11. This enforces
alignment of the spinssi and si 11 and hence increase
^si(t)si 11(t)& on a microscopic time scale. In the agin
limit, the leading term in the integrated response is j
xd(t,tw);2/Apt which connects to the plateauxd(t,tw)
'2/Aptw for Dt!tw but eventually decreases asxd(t,tw)
'2/ApDt for Dt@tw .

For constructing a FD plot~Fig. 4!, we are interested in
keepingt fixed and varyingtw between 0 andt; the functions
Cd(t,tw) andxd(t,tw) are then monotonic intw . In fact, the
exact expressions~45! and ~46! satisfy Cd(t,t)2Cd(t,tw)
5xd(t,tw)14„c2@(t1tw)/2#2c2(t)…. Dividing this relation
by the equal-time valueCd(t,t) yields the relevant normal
ized quantities

12C̃d~ t,tw!5x̃d~ t,tw!1

c2S t1tw

2 D2c2~ t !

c~ t !@12c~ t !#

5x̃d~ t,tw!1OS 1

At

t2tw

t1tw
D . ~47!

In the limit t→` the extra term in Eq.~47! vanishes and we
get 12C̃d(t,tw)5x̃d(t,tw) for all 0<tw /t<1. This, how-
ever, does not imply that the equilibrium FDT holds, i.
Xd(t,tw)51. In fact, working out (]/]tw)Cd(t,tw) and
Rd(t,tw) from Eqs.~45! and~46! and expanding their ratio in
the aging limit give
01611
o-

t

,

Xd~ t,tw!;
tw~ t1tw!

tw~ t1tw!1~ t2tw!At22tw
2

. ~48!

The FDR~48! is a function of the time ratiotw /t and crosses
over fromXd(t,tw)51 for tw /t→1 to Xd(t,tw)5Xd

`50 for
tw/t→0 ~Fig. 4!. This seemingly paradoxical result can ea
ily be explained in terms of the expansions given above
the regimeDt!t ~which is equivalent toDt!tw , as consid-
ered before!, we have, up to subleading corrections fort
→`, Cd(t,tw)'4c(t)pr(t2tw) and xd(t,tw)'4c(t)@1
2pr(t2tw)#. So the equilibrium FDT indeed holds in thi
regime and the DLPA process is, to leading order, just
ensemble of independent random walks. Now recall t
pr(Dt)'1/A2pDt for Dt@1. So at the point where this ap
proximation breaks down,Dt't, the value of, e.g.,Cd(t,tw)
decreases to an arbitrary small fraction ofCd(t,t) as t in-
creases. This leads to a straight line segment which eve
ally covers the whole of the~normalized! FD plot while the
size of the nontrivial region shrinks as 1/At. In the latter part,

for C̃d(t,tw)!1/Apt, one has from the aging expansions
Cd(t,tw) andxd(t,tw),

12x̃d~ t,tw!'
1

Apt
1

Apt

2
C̃d

2~ t,tw!. ~49!

Hence the FD plot indeed turns horizontal asC̃d(t,tw) ap-
proaches zero, consistent with Eq.~48!. In summary, a FD
plot is not the appropriate representation for the FDT vio
tion measured by the defect autocorrelation and respons
plot of the FDR as a function oftw /t, however, converges to
the nontrivial limit curve given by Eq.~48! as times diverge,
see Fig. 4.
6-11
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FIG. 4. Normalized FD plot~left! and the corresponding FDR vstw /t ~right! for the defect autocorrelation and susceptibility. In bo
plots t is kept fixed, giving a one-to-one correspondence of the curves, and varies over the ranget5100 ~dotted!, 101/2,101,103/2,102 ~solid!.
The curves ofXd(t,tw) for t5103/2,102 are almost indistinguishable and very close to the limit curve~48!.
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2. Uniform field: Coherent functions

For uniform covariancesqn51, the defect observableOd
is equivalent to the total energy of the system. According
Eq. ~23! we haveCe(t,tw)5C(0;t,tw), which may be sim-
plified to give

Ce~ t,tw!54e22t@ I 01I 1#~2t !2e22(t1tw)

3@3I 014I 11I 2#~2t12tw!. ~50!

This result again has an analog in the associated DL
process, where it describes the normalized two-time corr
tion of the total number of particlesN, Ce(t,tw)
5(4/N)@^N(t)N(tw)&2^N(t)&^N(tw)&#. A result similar to
Eq. ~50! was given in Ref.@46#, for initial conditions corre-
sponding formally to equilibrium at inverse temperatu
1/T52`. Up to a factor of 4 which appears to be missing
Ref. @46#, it coincides with Eq.~50! for large tw , where one
finds the simple scaling form Ce(t,tw);4/Ap(1/At
21/At1tw). At equal times, fluctuations in the energy fo
low as Ce(tw ,tw);(22A2)Cd(tw ,tw). This shows that in
Ce(tw ,tw)5(nCn(tw ,tw), the nonlocal (nÞ0) terms make a
contribution2(A221)Cd(tw ,tw), of the same order as th
local term but with opposite sign. ForDt!tw , the two-time
correlation Ce(t,tw)'Ce(tw ,tw) has a plateau but it de
creases asCe(t,tw)'2tw /(DtApDt) whenDt@tw .

By settingk50 in the Fourier transform~B4! we find that
xe(t,tw)5x(0;t,tw)[0 at all times. This is for the simple
reason that the perturbation is proportional to the Ham
tonian and therefore just rescales the temperature, which
viously has no effect in theT→0 limit considered here. We
note thatxe(t,tw)5(nxn(t,tw)50 implies that the sum ove
01611
o

A
a-

l-
b-

all cross susceptibilities (nÞ0) exactly balances the loca
susceptibilityxd(t,tw)[x0(t,tw).

A FD plot for the energy is obviously just a horizontal lin
and the corresponding FDR isXe(t,tw)5Xe

`5Xd
`50. This

matches our findings in Sec. II B in the sense that the
plot for the coherent observable is a straight line whose sl
is theX` of the incoherent observable.

3. Short-range correlated field

We have seen above that for local defect observables
FD plot is not appropriate for determining FDT violatio
effects, since it converges to a straight line in the aging lim
It turns out that the same holds for defect observables
fined by short-range correlated fields. To see this, we re
from Eq. ~13! that, e.g., the correlation functionC(t,tw) of
the observable is a weighted sum of the nonlocal defect
relations, and focus on the regimeDt5O(1) that dominates
the FD plot for largetw or t. From Eq.~20!, one then easily
shows that whenever a nonlocal term with givennÞ0 is of
the same order as the local contributionCd(t,tw)[C0(t,tw)
;2/Aptwe2DtI 0(Dt), it can be written as

Cn~ t,tw!;
2

Aptw

e2DtI n~Dt !. ~51!

In the same regime, the expression for the nonlocal sus
tibility xn(t,tw) is identical apart from a minus sign. Thi
shows that, whatever the short-ranged field correlationsqn ,
the FD plot of x(t,tw) versusC(t,tw) for the observable
considered becomes trivial for long times, just as in the c
qn5dn,0 . We, therefore, focus on the FDR in the followin
6-12
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which requires analysis of (]/]tw)C(t,tw) and the response
R(t,tw)52(]/]tw)x(t,tw) and should become nontrival i
the aging limit.

By analogy with the results presented in Sec. II B 3
spin observables, we will show that the FDR becomes id
tical to that for the incoherent functions in the aging lim
The procedure is again to prove that the Fourier transfo
of the defect functions (]/]tw)C(k;t,tw) and R(k;t,tw) are
representations ofd̃ in the aging limit and with appropriate
normalization.

Expressions~B3! for C(k;t,tw) and the one that follows
from Eq. ~B4! for R(k;t,tw) are rather complicated and it i
a priori not clear how they behave as times diverg
Asymptotic expansions in the aging limitt,tw→` with e
<tw /t<12d fixed (e,d.0) and uku<K whereK5c/Atw
(c.0 arbitrarily large but finite!, however, capture the rel
evant features ofC(k;t,tw), R(k;t,tw) and have a consider
ably simpler form:

C~k;t,tw!;
4

Ap
H 1

At
e2k2(t22tw

2)/(4t)2
1

At1tw

e2k2(t1tw)/4J
12ke2k2(t1tw)/2H erfiS k

t1tw

2At
D

2erfiS k
At1tw

2 D J , ~52!

R~k;t,tw!;
1

Apt
S tw

t D k2e2k2(t22tw
2)/(4t). ~53!

erfi(x) is the error function with imaginary argumen
erfi(x)5(1/i )erf(ix) @42#. Note that the arguments of all ex
ponentials and the erfi’s are ofO(1) if tw /t andk are in the
specified range. Foruku larger thanO(1/Atw), results~52!
and ~53! do not apply.

In Eq. ~52!, the growth of erfi(x);ex2
/(Apx) is over-

compensated by the exponential prefactor and so we
makeC(K;t,tw) arbitrarily small by increasingc. For larger
k, uku.K, the values ofC(k;t,tw) as given by Eq.~B3! also
turn out to be insignificant. Therefore,C(k;t,tw) develops an
infinitely sharp peak of widthO(1/Atw) at k50 in the aging
limit and becomes a realization ofd̃(k) when normalized by
Cd(t,tw), in analogy with Eq.~33!. Differentiating Eq.~52!
with respect totw turns out to reproduce the rigorous expa
sion for (]/]tw)C(k;t,tw) and similar arguments apply
Hence, C(t,tw);NcCd(t,tw) and (]/]tw)C(t,tw)
;Nc(]/]tw)Cd(t,tw) for any short-range correlated fiel
with NcÞ0.

Expansion~53! for the response functionR(k;t,tw) also
peaks sharply in the regionuku<K near k50; it follows
from Eq. ~B4! that outside thisk range,R(k;t,tw) is insig-
nificantly small again. We have, however,R(0;t,tw)50 at
all times. Nevertheless,Rd(t,tw) yields normalization and
the ratio of both vanishes in the aging limit for anykÞ0
~modulo 2p). So R(k;t,tw) becomes a realization ofd̃(k)
01611
r
n-

s

.
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-

when normalized byRd(t,tw), i.e., two infinitely sharp peaks
at 01 and 02. ThereforeR(t,tw);NcRd(t,tw) for any short-
range correlated field withNcÞ0.

Since R(t,tw);NcRd(t,tw) and (]/]tw)C(t,tw)
;Nc(]/]tw)Cd(t,tw), any defect observableOd with short-
range correlated fieldse i and NcÞ0 ultimately gives the
same FDR as the incoherent functions. The scaling of
peaks in Eqs.~52! and ~53! implies associated time
dependent length scales in real space. As in the s
observable case, the FDR will thus display a crossover~see
Fig. 5! when these length scales become comparable with
length over which the fieldse i are correlated. We note finally
that, in contrast to the responseRn(t,tw) discussed above
the integrated response or susceptibilityxn(t,tw) displays
somewhat unusual behavior; e.g., the local valuex0(t,tw)
dominates the nonlocal terms for all times, so that to lead
order there is no real-space length scale associated with
defect susceptibility. One also finds nontrivial features in
FD plots and FDRs for the cross correlationsCn(t,tw) and
susceptibilitiesxn(t,tw) @47#. However, in the aging limit
and for any fixednÞ0 the FDR for the local observabl
(n50) is recovered as in the spin-observable case.

4. Infinite-range correlated field

We next consider the FDR for observables defined
infinite-range correlated fields. As for short-range correla
fields, we will not discuss the integrated quantitiesC(t,tw)
andx(t,tw) in detail. One finds again that these give a triv
FD plot for long times, although the argument for this
somewhat more subtle than in Eq.~51! because one needs t
consider an infinite range of distancesn.

The exact expressions for the two-time correlation fun
tions and susceptibilities for defect observables with pow
law covariances follow from Eq.~23! by substitution of
C(k;t,tw), Eq. ~B3!, x(k;t,tw), Eq. ~B4!, and qP(k), Eq.
~25!. The responseR(t,tw) is then obtained fromx(t,tw) by
R(t,tw)52(]/]tw)x(t,tw) as usual. The resulting equation
are rather bulky and too complex for a meaningful disc
sion. So we immediately turn to the aging limit, where w
can use the following, asymptotically exact, approximatio
First, we replace the exact expressions in Eq.~23! for
C(k;t,tw),R(k;t,tw) by Eqs. ~52! and ~53!. Although Eqs.
~52! and ~53! do not hold outside the rangekP@2K,1K#,
the contributions to thek integrals are subleading. Second,
the integrands have infinitely sharp peaks atk50 in the ag-
ing limit, we may replaceqP(k) by the leading term of its
expansion atk50, i.e., replace sin(k/2) by k/2 in Eq. ~25!.
This in turn allows us to extend the limits of integration
~23! from 2p,1p to 2`,1`, whereby we again just ac
cumulate subleading errors. Having made these approxi
tions, which still yield asymptotically exact results, thek
integrations can be evaluated and we get

CP~ t,tw!;
2

p
GS 11a

2 D H t (a21)/2~ t22tw
2!2a/2

2~ t1tw!2(11a)/2FS a;
t1tw

2t D J , ~54!
6-13
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FIG. 5. Left: Time evolution of the defect-observable FDR for a random field with Lorentzian covariances~24! anda5102, correlated
overNc5ap cothap'ap sites. For each curvetw is kept fixed, varying over the rangetw5100, . . . ,106,` from bottom to top. The curves
for tw5100,101,102 are flat; in this regime, the observable is effectively identical to the energy. Fortw5103,104,105,106 we see the
crossover to the limit curve fortw→` given by Eq.~48! and corresponding to the incoherent observable. Right: Limit curves of the FD
tw /t for t,tw→`. From bottom to top, these correspond to power-law covariances with exponenta50.1,0.2,0.4,0.6,0.8. The top curv
shows the random-field limita→1 for power laws, and also applies to any short-range correlated field, Sec. II C 3, withNcÞ0 or, in the
extreme case, the incoherent functions of Sec. II C 1.
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RP~ t,tw!;
2

p
aGS 11a

2 D twt (a21)/2~ t22tw
2 !2(11a/2),

~55!

where we have introduced the shorthand

FS a;
t1tw

2t D512~12a!22(11a)/2FBS 1

2
,12

a

2
;
t1tw

2t D
2BS 1

2
,12

a

2
;
1

2D G . ~56!

In the limit a→1, Eqs. ~54! and ~55! reduce to the
asymptotic expansions of the incoherent functionsCd(t,tw),
Rd(t,tw) while a→0 gives the asymptotic expansions of t
coherent ones, i.e.,Ce(t,tw) from Eq. ~54! andRe(t,tw)50
from Eq. ~55!. So the power-law covariances~25! again al-
low us to interpolate between local and global observab
For intermediate exponents 0,a,1, the two-time correla-
tions in Od decrease astw

21/2Dt2a/2 in the regime 1!Dt
!tw and cross over totwDt2(31a)/2 for 1!tw!Dt. The re-
sponseRP(t,tw) behaves astw

21/2Dt2(21a)/2 for 1!Dt!tw
andtwDt2(51a)/2 for 1!tw!Dt. An aging expansion for the
FDR again gives nontrivial curves. The derivativ
(]/]tw)CP(t,tw) follows correctly by differentiating expan
sion ~54! which, together with Eq.~55!, yields
01611
s.

XP~ t,tw!;H 11
t2tw

tw
F12a

2a
1

11a

2a
A t

t1tw
S t2tw

t D
3FS a;

t1tw

2t D G J 21

. ~57!

The FDRXP(t,tw) is a function oftw /t only and interpolates
between the FDR~48! for the local defect observables (a
→1) andXe(t,tw)50 for the energy (a→0). For any power
0,a,1, Eq. ~57! crosses over fromXP(t,tw)51 for Dt
!tw to XP(t,tw)5XP

`50 for Dt@tw ~see Fig. 5!.

5. Harmonically correlated fields and X`

In contrast to spin observables, it appears that for de
observablesOd we generically findX`50. To prove this
claim we may again follow the approach presented in S
II B 5. Introducing a FDR for defect Fourier mode
X(k;t,tw) according to Eq.~40! based on the two-time defec
correlation function~B3! and susceptibility~B4! allows us to
write the FDR for any defect observable in form~41!. The
full expression forX(k;t,tw) is rather complicated and, in
contrast to Eq.~42!, retains a nontrivial dependence onk, t,
and tw . The only general features areX(0;t,tw)50,
since X(0;t,tw)5Xe(t,tw)50, and X(6p;t,tw)51
1O(Atwe24tw) being independent oft and close to 1 for
tw@1. For intermediate values 0,uku,p, the FDR
X(k;t,tw) can, in fact, take arbitrarily large values for appr
priate tw and t. To repeat the argument of Sec. II B 5, how
6-14
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ever, we just have to be able to take the limitt→` for fixed
and finitetw . A scaling analysis of (]/]tw)C(k;t,tw) as ob-
tained from Eq.~B3! shows that this quantity develops a
infinitely sharp peak atk50. Hence, the normalized distr
bution of q(k)(]/]tw)C(k;t,tw) over 2p<k<p becomes,
for sufficiently well-behaved functionsq(k), a realization of
d̃(k) as t→`. Remarkably, the FDR for defectsX(k;t,tw)
approaches a simple, smooth function onp,k,p in the
same limit,

lim
t→`

X~k;t,tw!52S sin2
k

4D S 114tw cos2
k

4D
3~22e24tw sin2 k/4!21. ~58!

Together, these two facts imply that out of the spectrum
FDRs X(k;t,tw) for Fourier modesk, the long-time limit t
→` again selects the contributions associated with infin
length scales (k50). These are, in the limit, given by Eq
~58! and equal to zero. The FDR~41! for defect observables
X(t,tw)→0 thus vanishes ast→` regardless of the choic
of q(k), except in pathological cases as discussed in S
II B 5. Note that because Eq.~58! for k50 gives a vanishing
result for anytw , one in fact has limt→` X(t,tw)5X`50,
without needing to taketw→`.

We note finally that the behavior at short wavelengths
rather more complex for defect observables than for spins
particular, even for what one might expect to be ‘‘equi
brated’’ wavelengths,k2tw@1, it is not true thatX(k;t,tw)
'1 for all times t, and X deviates significantly from this
simple value for large time differencesDt@tw as can be seen
from Eq. ~58!.

D. Physical discussion

We saw above that apart from pathological exceptions
spin and defect observables giveidentical values for the
asymptotic FDRX`, with X`51/2 for spin observables an
X`50 for defect observables. These slopes are most ea
read off from the FDT plots for the coherent observab
~magnetization and energy, respectively! which become
straight lines in the long-time limit.

It is natural to ask how these results would extend
observables other than those we have considered, suc
O5( ie isisi 12 which involves spin pairs at distance 2. W
have worked out explicitly the FD properties based on
general solutions given in Ref.@39# for the coherent and
incoherent versions for this observable@47#; one finds that
they are, up to subdominant corrections, identical to those
O52( ie isisi 11. The physical interpretation is simple
sisi 12521 if there is exactly one domain wall betwee
spinsi and i 12, while sisi 1251 if there is no domain wall
or if there are two. The last alternative, however, is su
pressed in the aging limit where typical distances betw
domain walls scale asAtw, and so sisi 12'sisi 11
1si 11si 1221. For the coherent observable (qn5@e ie i 1n#
51), this directly explains our observation; for the incoh
ent version (qn5dn,0), it follows from the fact that the cor-
relations ofsisi 11 andsi 11si 12 are identical to the autocor
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relations ofsisi 11 in the aging limit.
By a similar reasoning, we can now predict the FD b

havior of higher-order observables of the form

Oj
(k)5(

i
e i )

h51

k

si 1 j h
, ~59!

with k>3 and j 150; j 2 , . . . ,j k specify the relative dis-
placements of the spins in thekth-order products. For evenk,
each term)hsi 1 j h

again has a sign depending on the numb
of domain walls between spinsi and i 1 j k . In the aging
limit, configurations where more than one domain wall o
curs can be neglected, so that we can replace the produ
sisi 1 j k

. By the same argument as above, this is essenti
equivalent toj ksisi 11 and so should again giveX`50.

For oddk, on the other hand, the sign of)hsi 1 j h
is es-

sentially determined by the sign of the domain which t
spin si finds itself in. The leading contribution is now give
by configurations with no domain walls betweensi and
si 1 j k

. Configurations with at least one domain wall are ag
suppressed in the aging limit. We can, therefore, replace
product simply bysi to leading order, giving an asymptoti
FDR of X`51/2 as for genuine first-order spin observable

The fact that observables of even and odd order behav
different ways can also be motivated mathematically fro
the hierarchy of the equations obeyed by the multisp
correlation functions where the even and odd ordersk turn
out to decouple completely@39#. This is a peculiarity of the
one-dimensional Ising model, whereas in the generic c
one would expect all levels of the hierarchy to couple to ea
other, resulting in a unique value ofX`. We indeed find
strong evidence for this in the two-dimensional case belo

From a more physical point of view, the existence of tw
different values ofX` could be related to the fact that in th
one-dimensional chain atT50 one has both a critical poin
and an ordered phase. The resultX`50 for defect observ-
ables could thus be related to the ordinary results for co
ening in d>2 after a quench to an ordered phase, wh
X`51/2 for the spins would reflect the critical aspects
coarsening atT5Tc50.

It might be interesting—though rather complicated—
use the methods described above and in Ref.@39# to study
higher-order observables different from Eq.~59! for which
the above leading order approximations do not apply,
example, 12sisi 112si 11si 121sisi 12, which corresponds
to a quadratic operator in bond variables, 4bibi 11. We are
currently exploring this issue.

To recap, the central result of this section is that~almost!
all observables of form~59! interpolate between an equilib
riumlike behavior withX51 and an asymptotic FDRX`.
The latter are given by the values ofX(k→0), as was argued
in Refs.@33–35#. We have shown that the most efficient wa
of extractingX` is by studying coherent functions. Thes
results motivate the following section where the 2d Ising
model is studied at criticality.

III. THE 2 d ISING MODEL

In this section, we report on numerical simulations of t
2d Ising model. It is defined by the Hamiltonian
6-15
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H52(
^ i , j &

sisj , ~60!

wheresi ( i 51, . . . ,N) areN Ising spins located on the site
of a square lattice with periodic boundary conditions a
linear sizeL; the sum is over nearest neighbor pairs. W
perform Monte Carlo simulations using a standard Metro
lis algorithm where the spins are randomly updated. O
Monte Carlo step representsN attempts to flip a spin.

The system is prepared in a random state, correspon
to an infinite initial temperature. It is then quenched at
50 to the critical temperatureTc5 1

2 ln(11A2). As stated in
Sec. I D, we focus on the four natural FD relations for t
Ising model, constructed from the coherent and incohe
dynamical functions of spin and defect observables. The
tem size we use is different for coherent and incoherent
jects. Incoherent objects reflect the behavior of individ
spins or defects, and simulating a very large system is
vantageous in that it makes an average over many in
conditions unnecessary. Coherent objects such asCe(t,tw) or
Cm(t,tw), on the other hand, have an amplitude of the or
of 1/N. One should thus simulate many initial conditions
the smallest possible system, with the opposite constr
that the system has to be out of equilibrium even for
largest simulated time scaletsimu giving the condition
j(tsimu)!L. Our results are obtained withtsimu5105, L
5300 for coherent functions, andL5500 for incoherent
ones. Only a few samples over initial conditions are nec
sary for incoherent correlation functions, while 1000 init
conditions were sampled for coherent ones. This is also
number of realizations necessary to get the four suscepti
ties we have computed.

We now describe our results, starting with spin obse
ables and then turn to defect observables.

A. Spin observables

The two-time scaling behavior of the incoherent sp
functions Cs(t,tw) and xs(t,tw) has been the subject of
number of publications, as described in Sec. I C. We refe
the references cited there and directly present in Fig. 6

FIG. 6. FD plots for spin autocorrelation and response. Th
waiting times,tw543, 179, and 460, are represented by squa
circles, and triangles, respectively. The dashed line with slop
shows the equilibrium FDT. The full and dash-dotted lines ha
slopesXs

`50.34 andXs
`50.26, respectively; these are discussed

the text.
01611
d

-
e

ng

nt
s-
b-
l
d-
al

r
f
nt
e

s-
l
e

li-

-

to
e

FD plot for the spin autocorrelation and susceptibility. A ve
similar FD plot has been reported in Ref.@29#, although a
somewhat different susceptibility*0

twdtRs(t,t) was plotted
there, so that the FD plot looks reversed compared to Fig
Otherwise, we find the features anticipated in Sec. I C. T
FD plot is characterized by an initial part which follows th
equilibrium FDT, corresponding to short, equilibrated leng
scales. For larger time differences, the FD plot deviates fr
the FDT in a nontrivial manner due to the nonequilibrat
fluctuations at small wave vectors. In the limit of large tim
differences the FD plot has a nonzero slopeXs

` , in contrast
to the zero slope obtained below the critical point@7,8#.
These features make the FD plot rather similar to the
obtained ind51, see Fig. 2~left!. Note also that a cleartw
dependence remains in these FD plots, the nonequilibr
part becoming smaller for largertw @29,32#. This implies, in
particular, that Eq.~6! does not hold and that the FD plot w
use, witht2tw instead oftw as the curve parameter, does n
directly give the FDR, as explained in Sec. I A. However,
thoroughly discussed in Ref.@29#, Xs

` can still be read off
from the FD plot, due to the asymptotic scaling of the c
relation and response functions, as reviewed in Sec. I C.

The infinite-time value for the slope of the FD plot for th
2d Ising model was estimated in Ref.@29# asXs

`50.26. We
recognize from Fig. 6 that the crossover fromX51 to Xs

`

,1 takes place over a very small range of the correlator,
that a precise determination of the infinite-time value of t
FDR is difficult. A tentative numerical extrapolation i
shown Fig. 7, where the quantity @xs(t,tw)
2xs(`,tw)#/Cs(t,tw) is plotted againstCs(t,t)2Cs(t,tw);
as the abscissa approaches 1~i.e., for large time differences!,
the ordinate should converge toXs

` . The figure shows tha
the valueXs

`50.34 is compatible with the data, but eve
though we use larger waiting times than in Ref.@29# there is
substantial scatter in the points. However, we have more
cise estimates ofXs

` to guide us, as we now describe.
The study of the model ind51 in Sec. II showed that the

crossover fromX51 to Xs
` for spin functions reflected the

different dynamics of large and small wave vectors which

e
s,
1

e FIG. 7. Tentative extrapolation of the infinite-time slope of t
FD plots of Fig. 6. The lines are only suggestive, indicating that
asymptotic FDR ofXs

`50.34 is compatible with the data in th
regimeCs(t,t)2Cs(t,tw)'1. The different symbols have the sam
meaning as in Fig. 6.
6-16
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thed52 case would be defined according tokj(tw)"1. The
dynamical behavior of the small wave vectors was gover
by the asymptotic FDRXs

` . This suggests that a much sim
pler measurement ofXs

` should be possible by focusing o
thek→0 limit, i.e., by measuring the correlation and susce
tibility of the magnetization densitym(t). The resulting FD
plot is reported in Fig. 8. As for the 1d case, a very simple
result is obtained, with the FD plot extremely well fitted by
simple straight line. The fit holds for several decades of tim
tw,t,tsimu, for each waiting timetw that we have consid
ered, providing strong evidence thatXm(t,tw)5Xm

` at all
times. Furthermore, the slopes of the three curves in Fi
are very close to one another, and this allows us to report
value

Xm
`50.34060.005. ~61!

This is the value we used to fit the data for the incoher
spin functions in Figs. 6 and 7, demonstrating that the d
are consistent with the equalityXs

`5Xm
` . This is somewhat

different from the value reported in Ref.@29#, but we believe
that our measurement from the magnetization is much m
reliable than the extrapolation of the incoherent spin fu
tions, as explained above. We note also that this value i
extremely good agreement with the two-loop expans
value reported in Ref.@33#. However, unlike the 1d case, we
do not have a simple physical argument to explain the ac
numerical value.

B. Defect observables

We now turn to defect observables. The simplest fu
tions to consider are the defect autocorrelation function
the conjugate susceptibility. These quantities have been s
ied recently for kinetically constrained Ising models~in par-
ticular, the Fredrickson-Andersen model in 1d), where they
were shown to give rise to simple FD plots@36#. We present
the corresponding FD plot for the 2d Ising model in Fig. 9.

FIG. 8. FD plots of correlation and susceptibility for the ma
netization. The three curves are for waiting timestw546, 193, and
720 ~bottom to top!. The curves fortw5193 andtw5720 have been
shifted vertically for clarity, since they would otherwise overla
with the curve fortw546; the unshifted curves all pass through t
origin as they should. The dashed line is the equilibrium FDT. T
full lines have slopeXm

`50.34.
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Again an apparently very simple result is obtained, with t
FD plot very well fitted by the equilibrium straight line with
X51. This is an unexpected result, since the system is
from equilibrium as was demonstrated by the study of s
observables in the preceding section. It could also be take
imply, as in Ref.@36#, that the asymptotic value of the FDR
associated with the defects has the equilibrium valueXd

`

51.
Our above study of the 1d model again clarifies the situ

ation. There, we found that the incoherent dynamical fu
tions of the defects exhibited a crossover from equilibrium
nonequilibrium behavior, but that the nonequilibrium pa
was barely visible in a FD plot, since the crossover occ
when correlators have already decayed to very small val
This suggests that the apparent equilibrium behavior
served in simulations for the 2d Ising and 1d Fredrickson-
Andersen models is simply a good approximation to num
cal data, but may miss nontrivial FD relations at large tim
due to limitations in the numerical analysis. However, as
the spin observables, the solution to this problem is straig
forward and consists in focusing on thek→0 limit. We thus
investigate next the coherent functions for the defects wh
are the autocorrelation and susceptibility for the energy d
sity.

The resulting FD plot for the energy density is shown
Fig. 10. As for the magnetization, very good fits by pu
straight lines are obtained, implying the equalityXe(t,tw)
5Xe

` . Note, however, that these plots have more noise t
the ones for the magnetization. This is due to the fact that
abscissa now involves a genuine connected correlator
which the nonzero average of the energy density needs t
subtracted off. Nonetheless, the slopes of the FD plots in
10 are very close to one another and give the result

Xe
`50.3360.02. ~62!

An important outcome of this paper is that this value
compatible, within error bars, with the value reported abo
for the asymptotic FDT for the magnetization and the spi
This strongly suggests that the various infinite-time FD
that we have measured in the 2d Ising model are all equal

e

FIG. 9. FD plots for defect autocorrelation and susceptibili
Data for two waiting times,tw543 ~squares! andtw5179 ~circles!,
are presented. The second one has been vertically shifted for cl
The full lines represent the equilibrium FDT.
6-17
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and that the critical point of the 2d Ising model is described
by a single new universal quantity

Xs
`5Xm

`5Xd
`5Xe

`[X`'0.340. ~63!

SUMMARY AND DISCUSSION

In this paper, we have studied the relation between tw
time multispin correlation and response functions in the n
equilibrium critical dynamics of Ising models, analytically
thed51 case, and numerically ind52. We have shown tha
FDRs, while observable dependent, fall into well-defin
classes, which are qualitatively similar to those observed
various glassy systems. All FDT violations can be und
stood by considering separately the contributions from la
wave vectors, which are at quasiequilibrium and obey
FDT, and from small wave vectors where a generalized F
holds with a nontrivial fluctuation-dissipation ratioX`

5X(k→0). In d51, we find through exact calculation
X`5 1

2 for spin observables andX`50 for defect observ-
ables. Ind52, we find numerically a uniqueX`.0.34 for
all observables. These results suggest that the definition o
effective temperatureTeff5T/X` for large length scales is
generically possible in nonequilibrium critical dynamics.

Further, this work also suggests many interesting lines
future investigation. An important question is what are t
limiting FDRs in diffusive models that are analogous to t
d51 Ising model but have glassy features, for example,
one-spin facilitated Fredrickson-Andersen model@48# or
symmetric plaquette models@36#. Also, it would be interest-
ing to confirm our results for the 2d Ising model by analyz-
ing higher-order correlation functions by means of the ren
malization group techniques used in Refs.@33–35# to
confirm the uniqueness of the FDR. This would make t
function an interesting quantity to study in more generic n
equilibrium situations such as driven interfaces or driven d
fusive systems.

FIG. 10. FD plots for the energy density. The three curves
for tw580,193,464~bottom to top!. The curves fortw5193 and
tw5464 have been vertically shifted for clarity, and would oth
wise again pass through the origin. The dashed curve is the e
librium FDT; the full lines have slopeXe

`50.34.
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APPENDIX A: MODIFIED BESSEL FUNCTIONS

Here we briefly summarize the main properties of t
modified Bessel functionsI n(x) that are relevant for the
analysis given above. A comprehensive description may
found in Ref.@42#. For integer ordern, I n(x) has the integral
representation

I n~x!5E
0

pdw

p
cos~nw!ex cosw, ~A1!

from which the functional relations

]

]x
I n~x!5 1

2 @ I n211I n11#~x!

and

2n

x
I n~x!5@ I n212I n11#~x! ~A2!

follow immediately. In particular, it is clear from Eq.~A1!
thatI 2n(x)5I n(x) andI n(2x)5(21)nI n(x). The aging ex-
pansions of our results are based on the asymptotic form

I n~x!5
ex

A2px
F11

124n2

8x
1OS 1

x2D G , ~A3!

which applies in the limit of large argumentsx for fixed order
n. For the derivation of the Fourier transforms of the mul
spin correlation and response functions, we use

(
n

e2 inxI n~a!5ea cosx, ~A4!

(
n

e2 inkI n2m~a!I n1m~a!5I 2mS 2a cos
k

2D , ~A5!

(
n

e2 inkI n~a!@ I n1m~b!1I n2m~b!#

52TmS b1a cosk

A D I m~A!, ~A6!

where Eqs.~A5! and ~A6! follow from Eq. ~A1!, the well-
known identity~A4! and trigonometric relations. In Eq.~A6!
0,a<b is required, A5Aa21b212ab cosk and the
Tn(x)5cos(narccosx) are Chebyshev polynomials of de
green in x.

e

ui-
6-18
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APPENDIX B: FOURIER TRANSFORMS

The Fourier transforms of spin correlation and response functions~18! and~19! follow immediately when using Eq.~A4!:

C~k;t,tw!5e2(t1tw)(12cosk)H 11E
0

2tw
dte2t cosk@ I 01I 1#~t!J , ~B1!

x~k;t,tw!5
1

2Etw

t

dte2(t2t)(12cosk)e22t@ I 012I 11I 2#~2t!. ~B2!

For defect correlations, however, a direct transformation of Eq.~20! yields a rather intractable expression. Therefore, we fi
rewrite Eq.~20! using the identity~which can be verified by differentiation!

e2(t2tw)I n~ t2tw!5e2(t1tw)I n~ t1tw!2E
t2tw

t1tw
dt 1

2 e2t@ I n2122I n1I n11#~t!,

as

Cn~ t,tw!5e22(t1tw)@ I n
22I n21I n11#~ t1tw!1

1

2Et2tw

t1tw
dte2(t1tw1t)

3$@ I n212I n11#~t!@ I n212I n11#~ t1tw!

2@ I n2122I n1I n11#~t!@ I n2112I n1I n11#~ t1tw!%.

Now, utilizing Eq. ~A2! and expressing factors ofn as derivatives with respect tok, the Fourier series forC(k;t,tw) may be
written in the form

C~k;t,tw!5e22(t1tw)(
n

e2 ink@ I n
22I n21I n11#~ t1tw!2

1

2Et2tw

t1tw
dte2(t1tw1t)

3H 4

t~ t1tw!

]2

]k2 (
n

e2 inkI n~t!I n~ t1tw!

12S ]

]t
21D(

n
e2 inkI n~t!@ I n2112I n1I n11#~ t1tw!J .

All summations in this expression can be evaluated via Eqs.~A5! and ~A6!. Some fairly complicated algebra is required
simplify the resulting expression, but finally one obtains the compact result

C~k;t,tw!5e22(t1tw)

I 1S 2~ t1tw!cos
k

2D
~ t1tw!cos

k

2

14E
0

tw
dte22(t1t)F 1

A
I 1~2A!12

tw2t

A
sin2S k

2D S I 1~2A!1
tw2t

A
I 2~2A! D G , ~B3!

whereA5A(t1t)2 cos2(k/2)1(tw2t)2 sin2(k/2). Equation~B3! is the most convenient representation forC(k;t,tw), both for
numerical and analytical purposes. The calculation of the Fourier transform of the defect susceptibility~21! is comparatively
easy; from Eqs.~A5! and ~A6!, one finds

x~k;t,tw!52e22tH @ I 01I 1#~2t !2I 0~2A!2
t cos2~k/2!1tw sin2~k/2!

A
I 1~2A!J , ~B4!

with A5At2 cos2(k/2)1tw
2 sin2(k/2).
016116-19



ting

MAYER et al. PHYSICAL REVIEW E 68, 016116 ~2003!
APPENDIX C: POWER-LAW COVARIANCES

Here we show that the covariancesqP,n given in Eq.~25!
follow a power law asunu→` and establish the linkqP,n
5F 21$qP(k)%. Let us first focus on the Fourier integral~22!
which—sinceqP(k) is even ink—may be written as

qP,n5

G2S 11a

2 D
212aG~a!

E
0

2p dk

2p S sin
k

2D a21

cos~nk!, ~C1!

where 0,a,1 as before. The simple substitutionx5k/2
yields the solvable integral@42#

E
0

pdx

p
~sinx!a21 cos 2nx5

~21!n

a2a21BS 11a

2
1n,

11a

2
2nD .

~C2!

Using the functional relation@42# B(x,y)5G(x)G(y)/G(x
1y) for the beta functionB(x,y) and simplifying the re-
maining expression yield the result forqP,n given in Eq.~25!.
Now we turn to the asymptotic behavior ofqP,n as unu→`.
For n>1 we may rewrite qP,n , using G(x)G(12x)
5p/sinpx andG(x11)5xG(x), in the form

qP,n5 )
k50

n21
12a12k

11a12k
. ~C3!
v.

01611
It is obvious from Eq.~C3! that qP,n is monotonically de-
creasing and vanishes forn→` as long asa.0. It is
equally clear thatqP,n51 for a→0 and qP,n5dn,0 as a
→1 ~since qP,n is even inn and qP,051;a). In order to
understand the asymptotic behavior ofqP,n , we take the
logarithm of Eq.~C3! and use the bounds

E
0

n

dkak< (
k50

n21

ak<a01E
0

n21

dkak , ~C4!

which hold for any nonincreasing functionak . For the case
at hand, the integrals can be solved easily. Exponentia
the result, multiplying byna, and taking the limitn→` then
give

~2e!2aA~12a!12a

~11a!11a
< lim

n→`

naqP,n

<~2e!2aA~11a!12a

~12a!11a
, ~C5!

which implies that there exists a finite constantc such that
qP,n;cn2a for 0,a,1.
ys.
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