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Fluctuation-dissipation relations in the nonequilibrium critical dynamics of Ising models
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We investigate the relation between two-time multispin correlation and response functions in the nonequi-
librium critical dynamics of Ising models =1 andd=2 spatial dimensions. In these nonequilibrium
situations, the fluctuation-dissipation theoréRDT) is not satisfied. We find FDT “violations” qualitatively
similar to those reported in various glassy materials, but quantitatively dependent on the chosen observable, in
contrast to the results obtained in infinite-range glass models. Nevertheless, all FDT violations can be under-
stood by considering separately the contributions from large wave vectors, which are at quasiequilibrium and
obey the FDT, and from small wave vectors where a generalized FDT holds with a nontrivial fluctuation-
dissipation ratioX”. Ind=1, we getX*:% for spin observables, which measure the orientation of domains,
while X*=0 for observables that are sensitive to the domain-wall motion. Numerical simulatias 2n
reveal a unique”=0.34 for all observables. Measurement protocolsfoare discussed in detail. Our results
suggest that the definition of an effective temperafuse= T/X* for large length scales is generically possible
in nonequilibrium critical dynamics.
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INTRODUCTION expect the results for infinite-range glass models to apply
exactly in all these nonequilibrium situations, it is worth-
Since the analytical solution of the nonequilibrium dy- while to understand analogies and differences, and thus to
namics of the sphericad-spin model in its low temperature push these ideas as far as possible. This is the philosophy of
phase[1], many studies have focused on the properties opur paper where nonequilibrium dynamics at criticality is
two-time nonequilibrium correlation and response functions@nalyzed along the lines described above. Our results suggest
and the relationship between thdi®,3]. In this paper, we that the concept of a generalized FDT is indeed useful at
report on analytical and numerical investigations of severagriticality, and we describe in detail the form it takes as com-
two-time multispin correlation and response functions in thepared to the results obtained in infinite-range glass models.
nonequilibrium critical dynamics of Ising models o= 1 The manuscript is organized as follows. The first section
andd=2 spatial dimensions. below reviews the results obtained for correlation and re-
Our work is motivated by the following observations. sponse functions in ferromagnets and delineates the scope of
Multipoint dynamical functions are standard objects in equi-the paper. In Sec. I, thedllsing model is studied analyti-
librium statistical mechanics which reveal microscopic infor-cally atT.=0. In Sec. lll, numerical results for thed2sing
mation related to experimentally observable quantities. Ifmodel atT. are presented. A summary and a physical discus-
nonequilibrated systems, however, the equilibrium relatiorsion of the results can be found in the last section.
between response and correlation, i.e., the fluctuation-
dissipation theoreniFDT), is not satisfied. This evident ob- |. FDT AND FERROMAGNETS
servation became important when it was realized that in the
p-spin model[1] and more generally in infinite-range glass
models, ageneralizedFDT can be formulatedi2—-5]. This Pure ferromagnets are generally not described as glassy
amounts to the introduction of a fluctuation-dissipation ratiomaterials, which are loosely defined as systems with large
X or, alternatively, of an effective temperatufg;=T/X for  relaxation times. However, if a ferromagnet initially prepared
the slow, nonequilibrated modes of the sys{@j The prop-  at high temperature is suddenly quenched to its low tempera-
erties ofX and T4 have attracted much interest, since theyture ferromagnetic phase, its equilibration time diverges with
suggest that a generalized statistical mechanics can be dgystem sizd11]. This is true also when the quench is per-
vised to deal with a broad class of nonequilibrium phenom+formed precisely to the critical poinT,=T.. In both cases
ena. the system remains, in the thermodynamic limit, forever in a
The generalized FDT is exact for infinite-range glassnonequilibrated, nonstationary state: it exhibits aging. There-
models only. It is, however, tempting to apply the same confore, one can study physical situations in pure ferromagnets
cepts in other contexts such as glassy systems with finitthat are reminiscent of aging phenomena observed, e.g., in
interaction range, as observed experimentally or simulatedpin glasses, polymers, or colloids. One is then led to ask if
numerically. A further step is made when those ideas ar¢he tools used in the glass literature are also useful to de-
transferred to other physical situations such as domaiscribe this type of nonequilibrium situation.
growth processel/,8] in nondisordered systems or the rhe-  These tools include, in particular, two-time correlation
ology of soft glassy material®,10]. Although one does not and response functions. Consider two physical observables

A. Correlation and response functions
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A(t) andB(t). Their connected cross correlation is definedTherefore, when Eq(6) holds, the FDR can be obtained

by directly from the slope of the FD plot, which ¥(C). Oth-
_ erwise, from Eq.(5) a plot of x(t,t,) against C(t,t)
Clt,tw) = (A(D)B(tw)) = (A() (B(tw), 1) —C(t,t,), with t fixed andt,, the curve parameter, will still
while the conjugate response function is given by have slopeX(t,t,,). Since the amplitude of correlation and

response functions can diverge or converge to zerot for
—o (see belowit can be useful to use normalized quanti-

ties, plotting (t,t,)=x(t,t,)/C(t,t) versus I C(t,t,)

where C(t,t,)=C(t,t,)/C(t,t). Since the normalization
Here hg is the thermodynamically conjugate field to the factors are independent of,, the slope of the FD plot is
observableB; for later convenience we scale the response bythen still given byX. The normalization issue is less impor-
T. Numerica"y or experimentally, it is often more convenient tant when presenting numerical data' which are by construc-
to measure the integrated response function, or susceptibilityon optained in a restricted time window where the ampli-
¢ tudes of the dynamical quantities typically change only
x(tt)= | amRet.n), @  slowly.
tw Appealingly, the FDR can also be interpreted as defining
an effective temperature] .4(t,t,,)=T/X(t,t,), replacing
the equilibrium temperatur€ by an equivalent quantity out
of equilibrium. Moreover, it is a general result that for the
caseA=B, where one considers the autocorrelatio@ind
the associated respondey; is the temperature measured by
d a thermometer coupled to the observahlat the appropriate
R(t,ty) = EC(UW)- (49 time scale[6]. As a direct corollary, this effective tempera-
" ture then satisfies the zeroth law of thermodynamics. Clearly,
In that case(- - -) in Egs. (1) and (2) stands for the usual however, the introduction of an effective temperature is of
ensemble average. If one follows instead the dynamics of thtiermodynamic interest only T is actually independent of
system after a sudden quench, the system is out of equilithe observables andB under consideration. This is indeed
rium and neither the time-translation invariance nor the FDTtrue for infinite-range glass mode[$], implying that al-
is satisfied. Then---) is to be read as an average overthough the system is out of equilibrium it can still be de-
initial conditions and any stochasticity in the dynamics. Inscribed in thermodynamic terms, at the moderate cost of in-
infinite-range glass models, a generalized FDT is satisfied itfoducing one extra parameter, namely, the effective
the aging dynamics. The generalization amounts to the introemperature[12]. Beyond infinite-range glass models, the
duction of a fluctuation-dissipation ratitFDR), X(t,t,,), observable dependence of the effective temperature remains
through largely an open question but has been discussed in detail in
the context of trap modelgl3] and in a realistic numerical
model of a supercooled liquidL4].

S(A(1))
5hB(tw)

R(tty) =T )

hg=0

which gives the response to a small constant fibjgl
switched on at the “waiting timet,, .

At equilibrium, correlation and response are time-
translation invariant and related by the FDT

J J
- —x(t,t,) =R(t,t,) = X(t,t,)—C(t,t). 5
Iy Iy B. Ferromagnets at low temperature

This definition becomes nontrivial because in the limit of For ferromagnets, two-time dynamical functions have
long timest andt,,, the FDR reduces to a function of a been studied both for a quench to the low temperature phase

single variable only, namely, the correlation function, and to criticality, with most work to date focused on the first
situation.
X(t,t,)—X(C(t,ty)), (6) In the low temperature phase, the evolution of the system

) _ consists in the growth of ordered domains, with a typical
where we retain the same symbol for the FDR and its longgomain sizef(t). Two-time quantities that have been thor-
time limit. As in equilibrium, response and correlation aregughly studied are the spin-autocorrelation function

then no longer independent quantities, although their relacs(t,tw)=<si(t)si(tw)>, wheres;(t) is the value of the spin

tionship is now more complex. , , at sitei at time t, and the conjugate response function
It is now standard to study this generalized FDT via theRS(t,tW)= — (9 9ty) x(t,tw) = 8(si(t) )/ Shi(t,), whereh; is

parametric representation, or “FD plot,” of the susceptibility o magnetic field at sité In this case, the connected and
X as a function of the correlatio@ [4]. At equilibrium, one  jisconnected correlations coincide, sing(t))=0 at all
has x(t,t,)=C(t,t) - C(t,t,). Hence, a plot ofx(t,tw)  stages of the coarsening process. From the analytical solution
againstC(t,t) — C(t,t,) gives a simple straight line of slope ¢ sglvable model§15—19 and the simulation of more real-
1: this is the equilibrium FD plot. Out of equilibrium, E()  jstic situationg7,8,20—22, the behavior of these two quan-
implies tities is now well known. For small time differenceSf=t
ity —t,<<t,, time-translation invariant behavior is observed,
X(t,tw)=f dxX(x). (7)  Cdtty)=CyAtl), xs(t,ty)~xs(At), and the FDTx(t,t,)
C(tty) ~C4t,t)—C4(t,t,) is obeyed. This first regime is
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due to thermal fluctuations in the bulk of the domains, whichlength, £(t) ~t'#, wherez is the dynamical critical exponent
are essentially equilibrium f[uctuations. .For larger time.sepa[31]_ Critical fluctuations of large wave vectorké(t)>1,
ratlons,At>_tW, the qu_ctuatlons of the interfaces dom_mate are almost equilibrated, while those with small wave vectors,
the dyn_aml_cal beha_wqr. The reas_onable hypothesis th‘%g(t)<1, still retain their nonequilibrium initial condition.
coarsening |sa§elf-5|mllgr process, in the sense that for Iarg1ehiS separation leads to the scaling forn@(t.t,)
times all dynamical functions depend on time only through~At‘ZB’VZCS(g(t)lg(tW)) and )(S(t,tw)~At‘25”’z)(s(§,(tv)vl

the typical domain sizef, implies the scaling form .
Cq(t,t,)=CJ(£€(t)/€(ty)) for the correlation function. The g(k;['W)), wEerg,B and vdare fthlf stangardhcrltlcgl eﬁpf?nents.
contribution of the interfaces to the response function can péNis can be !r_lterprete as follows. For s ort-tlm_e inerences
estimated[8] as a sum over all wave vectorg.(tt,) At<t,,, equilibrated fluctuations with large dominate and
%J‘iﬁ(t )ddkkfz ¢~1(t). This expression results ’1S‘ro'mw the dynamical functions assume their standard equilibrium
w S . power-law decay. The dynamics at large time separatibn
fact that the response at timig is dominated by large wave >t,,, on the other hand, is dominated by the growth of the

vectors, k€ (t,)>1, each wave vectdk giving a contribu- . .
tion of the order ofk 2. The factor¢ ~%(t) represents the _dynaml_c c_;orrelatllon I.ength and leads to &.(e.)./g(t‘”) .S'.Ca!'
ing. This in turn implies that, beyond the initial equilibrium

density of domain walls, and is a UV cutoff given by the part, the FD plot will again assume a nontrivial shape, as in
lattice spacing. This reasoning implies for the long-time con the Ising chain. The striking similarity of these results with

tribution to the susceptibility the scaling forny(t,tu) the aging dynamics of finite dimensional spin glasses was
~f(£(t,))X{€(D)/€(t,), where the functiorf (x) depends 'S dgingRe]}’S[zg 53 pin g
on the dimensionalityl of space and is given bi(x) = 1/x The reasoning above confirms that at criticald, can

for d>2, f(x)=(Inx)/x for d=2 and f(x)= const ford e . . . : .
—1. This scaling function has recently been revisited infake any finite value, in contrast with th& =0 obtained in

Refs. [22,23, with particular attention to the casg=2  the low temperature phase. It was further argued Kt
[24,25. should be a new universal quantity at criticalf®9]. As
From the above arguments, and tbe 1, the parametric such, it can be computt_ad using standard renormalization
plot of y(t,t,,) versusCqt,t,)— Cqt,t,) consists of an ini- 9roup procedures, and this program has rsgently been started
tial equilibrium part followed by an essentially horizontal for various model433—35. The value ofXg is known ex-
section. In the latter the correlation function decays due t@ctly for the Ising chain[26—28, where X{=3, for the
interface motion, while the response function hardly changespherical ferromagnetic modf29], whereXg =3 for d=4
because any contribution from the interfaces is suppresseshdX? =3 for d=3, and for the Gaussian moddl5] where
by the f(£(t,)) prefactor. If a limiting FDRXy is defined  XZ=3. An estimate is known for modé at second order in
through 4—d [33], to first order iny4—d for the diluted Ising model

. . [34], and to first order in 4 d in modelC [35].
Xo= lim limX(t,t), (8)

t,—® t—ow
" D. Motivations for this work

then it follows thatXg =0 for d>1 in coarsening processes.  This short review of known results in the nonequilibrium
For d=1, on the other hand, botgs and C are scaling  dynamics of pure ferromagnets shows that much research has
functions of¢(t)/£(t,) and the parametric plot assumes nobeen done on the subject. So, why another paper?
simple shape, implying thatg could be any finite number. First of all, the relevance of the notion of an effective
This is confirmed by the analytical solution of the dynamicstemperature at criticality can be questioned because the FD
of the Ising chain al'=0 which shows thak = 3 [26,27. plots for the spin dynamic functions do not assume a simple
The factor: was first derived in Ref.28]. linear shape with a well-defined slope, as happens in the low
temperature phase. This is related to the fact that at low
temperatures the decay of correlation functions occurs on
two well-separated time scales. Each has its own associated
The nontrivial value ofXg for the Ising chain was inter- effective temperature, a fact reminiscent of the physics of
preted using the fact that id=1, the ordering temperature structural glasses. At criticality, on the other hand, one has a
T=0 coincides with the critical poirf.=0 [26]. It was then  continuum of time scales associated with different wave vec-
suggested that a nontrividlg could be a generic feature of tors,t(k)~k 2 Moreover, for finitek the equilibration time
critical points[29]. This is physically reasonable, since the is finite, meaning that the number of modes that are still out
whole argument foX =0 in coarsening processes relies onof equilibrium decreases as time increases. This suggests that
the separation between bulk and interfaces; this is no longean effective temperature could be relevant only when consid-
valid at the critical point where the bulk has the well-known ering thek— 0 limit, a point which our analysis will clarify.
self-similar structure of ferromagnets at criticality. Second, we mentioned the important issue of the observ-
From analytical and numerical studies, the behavior ofable dependence of a generalized FDT. This issue remains
two-time single-spin dynamical quantities is again well un-completely open since the studies cited above focused exclu-
derstood, as briefly reviewed in Rf30]. Physically, the sively on a single FD relation, for the spin autocorrelation
nonequilibrium dynamics following a quench to the critical and associated response. In order to get a more complete
point consists in the growth of the dynamical correlationtheoretical understanding, it is crucial to understand if other

C. Ferromagnets at the critical point
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observables give the same results, and if not, how they arégate. We briefly present the main result of our method to
related. derive multispin two-time correlation and response func-
A third motivation for the study of higher-order correla- tions, as developed in Rdf39], and summarize the approach
tion functions comes from the observation that the dynamicsised to extract from this the quantities of interest here. Our
of coarsening models is dominated by the motion of topo+esults for spin dynamical functions are then given in Sec.
logical defects. For Ising models, these are domain walls, thd B—a preliminary account of which has appeared Ref.
local density of which is given by the “defect” observable [41]—and for defect functions in Sec. Il C. In Sec. Il D, we
si(t)s;j(t), where (,]) are nearest neighbors. Defect dynami-discuss the physical aspects of our results for ttesing
cal functions have recently been studied in the context ofnodel.
kinetically constrained Ising mode[86], and the FD rela-
tions that arose showed interesting and unexpected features. A. General strategy for the calculations
For an Ising model, there are at least four “natural”
FD relations, involving, respectively, the spin autocor-
relation Cg(t,t,), the magnetization density m(t)
correlation, Cp(t,t,)=(m(t)m(t,)), the defect auto-
correlation O=2 €5 and Og=2 €SSi1. (10)
I I

Calttw) = (D5 (DS (0S; (tw)) In both casesg; are quenched random variables with zero
—(si(D)s)(1))(si(tw)sj(tw)) mean [¢]=0 and translation invariant covarianceg.;
. o ) ) =[¢€i€;]; here[ -] denotes the average over the distribution
with (i,j) nearest neighbors, and the energy densit)  of ¢. Without loss of generality, we sgt= 1. We define the

correlation  Ce(t,ty) =(e(t)e(ty)) —(e(t))(e(ty)). Note  corresponding connected two-time correlation functions
again that connected and disconnected correlation functions

coincide for the magnetization; this is not the case for 1

Cq4(t,t,) andCg(t,t,). In the 1d case, we will also investi- Ct,tw) = (O OLtw))]
gate two-time functions which smoothly interpolate between

incoherent, local function&pin or defectand coherent, glo- and

bal ones(magnetization, energy and discuss the case of

We consider the following spin and defect observaldes
andOy:

correlation functions of higher order. In the 2ase, we will 1
stick to the four quantities listed above. C(t.tw) = N[<Od(t)od(tw)>_<Od(t)><od(tw>>]’ (1)
Il. THE 1 d ISING MODEL for spins and defects, respectively, and the responses
In this section, we study the nonequilibrium dynamics in T|8(O41))
the Glauber-Ising chain with the Hamiltonian R(t,tw) = N| shat
S( W) hS:O
H=—2 SiSi+1, 9 and
I
: : . . : T[5(04(1))
where thes; (i=1, ... N) areN Ising spins subject to peri- R(t,tw =<l 77+ : (12
N| Shy(ty) hy=0

odic boundary conditions. Glauber dynamics consists in each
spin s; flipping with rate 1[1—%ysi(s;_1+5S;+1)], where , ,
y=tanh(2T). Equivalently, the flip rates can be written as nerehs andh, are thermodynamically conjugate @ and
1[1+expAH/T)], whereAH is the change in the Hamil- Od respectively. All fungtlons are scaled Byto get quan-
tonian caused by the flip. We use this second expression fifies of the order of unity. It is easy to show that, in the
extend the definition of the rates to the case where th&ermodynamic limiN—ce, Egs.(11) and(12) become39)]
Hamiltonian includes field terms such as¥;h;s;, follow-

ing, e.g., Ref[26]. G!auber’s original prescr.iption treated the C(t,tw)zz q,Cn(t,t,) and R(t,tw)zz anR,(t,ty).
effects of external fields separatdly7] but is less standard n n

today. (13

We focus on the evolution of arbitrary two-time spin and ere we have used translational invariafedich holds for
defect correlation and response functions in the thermody-

namic limit N—sc, after a quench from equilibrium &k our quench from an equilibrium state define the distance-

=x to T—0. As explained above, although a variety of dependent correlation functions
aspects of the associated coarsening dynamics have already C. (t.t.)=(s(t)s:(t spin
been studiedl11,38, results on the nonequilibrium FDT vio- i-i(bt) =(si(0S;(tw) - (sping,

lation so far are restricted to the spin autocorrelation and = t Y=(s (t)s . (1)S: (t.)S: . 1(t.))— (s (1)S: . «(t
response functionf26,27]. In Sec. Il A, we introduce the =16t = (S0 1(D; (0] (b)) (SO 42(0)
more general class of spin and defect observables we inves- X(sj(tw)sj+1(ty)) (defects, (14
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and associated responses

k
G ERDY > (—1>”Qle‘tli

i t
(si(t)) 1<\ meSk) A ‘W(M(y )
I .
Rj—i(t,tw)ZTW (sping
J( W) hj:0 X(Sjl(O)SJk(0)> (17)
and
Here 7r denotes permutations ane-()” their sign;S(k) is
R _(tt)=T &(si(t)si;1(1)) (defects the set of all permutations 41,2, . . . k} while P(1,k) is the
Imnw oh; j+1(ty) ' set of permutations corresponding to choosingdered pairs

=0 (15  from the numbers 1,2.. k and keeping the remainink
— 21 numbers in ascending order. Explicit expressions for the

As usual,h; andh; ;,, are conjugate t®; ands;s;,q, re-  functions|,(x) and H,(x) are given in Ref[39] [for N
spectively. Translation invariance also shows that in the ther— thel (x) are the modified Bessel functions, see Appen-
modynamic limitN— o, expressiong1l) and(12) are self-  dix A]. We also show in Ref.39] that the evolution of two-
averaging, i.e., independent of the particular realization ofime multispin correlation and response functions is gov-
the disorder variables; . erned by an identical hierarchy of differential equations, so

Analysis of the nonequilibrium FDR for the observablesthat these quantities can be obtained from Et8). and(17)
O, 0y thus requires knowledge of all spin and defect corre-if we substitute the corresponding equal-time initial condi-
lation and response functio$4) and(15). We have tackled tions in Eq. (17). The latter are just equal-time
this problem in Ref[39] where we give closed, exact solu- correlations—or can be expressed in terms of these for the
tions for generic two-time multispin correlation and responseaesponse functions by generalizing the method developed in
functions in the Glauber-Ising chain after a quench fromRef. [26]—which we know already. For a quench from an
an arbitrary equilibrium state at temperatur§>0  equilibrium state, this leads to explicit results for the two-
to any T=0. The approach is based on the hierarchy oftime multispin functions. As simple examples, we state in
differential equations [40] for the spin correlations Ref.[39] the spin and defect functiori¢4) and(15) for the
<Si1(t)5i2(t)' . -sik(t)>, which we managed to solvexplic-  quench fromT;=< to T—0 considered here. For spins, one
ity for arbitrary initial conditions (s; (0)---s; (0)). ~ finds
Broadly, our technique is to first solve the different levels of
the hierarchy separately; each level corresponds to the corre- 2,
lation functions of a given order. The links to lower levels Cn(t,tw)=e‘(t”w)[In(t+tw)+f dr I (t+t,—7)
are then incorporated as inhomogeneities. The details are be- 0
yond the scope of the present paper but can be found in Ref.
[39]; the key result reads X[+ 1](7-)}, (18

[k/2|

(siy(D--s W)= > (=17

=0 7P,k t
| Xn(tty) = %e"f dr e Ia(t=7)[lo+211+15](27),
tW
X)El Hiw(zx)_iw(zx—l)(Zt) (19
(k=21
(r@i+1ys iﬁ(k))(t)’ (16 and for defects

t+ty,
Cn(tatw): %ei(tﬂw)[l nfl_InJrl:l(t'i'tw)JFt dTeif[Infl_In+1](7')+eizt{|n(t_tw)[lnfl+2|n+|n+1](t+tw)

—e (I g+ 1) (I T D] (), -

Xn(tatw):eizt{Z‘Sn,O[IO"_Il](Zt)_ In(t=t)[ln—1+ 21+ n+1](t+tw)}- (21)

Here and below the shorthafd . . ](x) is used to indicate venient than those for the responseR,(t,t,)
that all functions enclosed in the square brackets have the —(g/4t,,) xn(t,t,) and so we mostly base the following
same argument; d, is the standard Kronecker delta. Ex- discussion on them. We note that while E¢E8) and (19)
pressiong19) and(21) for the susceptibilities are more con- have already been given in various forms, e.g., 28], we
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are not aware of any equivalent in the literature of E6)  Transform (24) can be found in any table of the Fourier

and(21). The results for the spin response functions given intransforms. Equatioii24) indeed defines short-range corre-

Ref.[27] differ from ours because these authors used Glaublated fields: sinceq_ ,>0 the criterion becomesN,

er’s original prescription for the spin flip rat¢87]; at long =3.,q, ,<* which is satisfied since N.=q.(0)

times and lowT the results become equivalent, however. =as cothaw. By varyinga we can also smoothly tune our
Equations(18)—(21) will form the basis for our analysis observables between locaf,(,— &, asa—0) and global

of the FDR in the @ Ising chain in Secs. II B and Il C. For (q,_ ,—1 fora—) ones. We denote the corresponding cor-

now we return to the observabl€x, Oq4 and, in particular, relations and susceptibilities b9, (t,t,) and x,(t,t,). An

the choice of the field covariancgg. According to Eq(13), example of covariances that yield infinite-range correlated

we obtain spin and defect autocorrelation and response fundields is

tions by choosing uncorrelated random fields i.e., q,

= 6p,0- We abbreviate the notation in this case to that used in

the Introduction and writ€((t,t,,) for spin andCq(t,t,,) for

defect autocorrelations and similarky(t,t,), xq(t,ty) for Qpp=(—1)"

susceptibilities. Uniform covariances,=1, on the other r

hand, yield full summations over all cross-correlation and

response functions in Eq13). So O4 and O4 produce just 1+

the magnetization and energy, respectively; we thus use the r2l——

obvious shorthandsC,(t,t,), xm(t,tw), and Cg(t,t,), oquk) =

xe(t,t,) for this case. It will turn out that the localqgf P

= 6,0 and global §,=1) FDT relations for spin and defect

pbservaples are very differen_t. Therefore we also investiga\t\%r1ere 0< a<1 andl'(x) is the Gamma functiof42]. It is

intermediate choices af, that mte_rpolate between _thgse tWO ¢jear from Eq.(25) that e, is even inn and gp=1. We

extremes. Two classes of covariances can be distinguishegy, . in Appendix C that for—1 we getgp,= 8, o while

V\f/e may.interpolﬁte bet\_/v?en,= On,0 an]qu“: 1bya fa;nily a—0 givesgp,=1. We also prove there thgp, decreases
of covariances that satis '$”|q“|<°°. or any nonunitorm monotonically agn| increases, decaying asymptotically as a
choice ofq,; we call the corresponding fields short-range power law gp,~|n|"¢ and that indeedF {qgp(k)}

N ’

correlated. Alternatively, we can interpolate such that:qp,n. The reverse transform#{qp,,} does not converge in

2p|qn| == as long as the fields are not completely UNCOMe€+he ysual sense, but this is not necessary for the equivalence

lated; we refer to such fields as infinite-range correlated. | fE ; :

. . X gs.(13) and(23). So Eq.(25) again allows us to inter-
either case, th? analysis of the. FDR for the correlatl.on anl%olate smoothly between local and global observables, but in
response functions of the associated observable requires usdg.;, o way thak,qp, = for any ae[0,1. The correla-

nYPn [t I

eva!uate t_he infinite sums in E(_113). This can be done con- tions and susceptibilities for the observables defined by fields
veniently in terms of the Fourier transfornagk) = #{q,}, e with the power-law covariance&5) are denoted by

Eﬁg“;ﬂ%““” and  x(kitt)=Fxa(tbt}h oyt ) andye(t.t,) below

1+«

2
r 2

1+«
2

> +n

1+ a )
—Nn

k a—1
sin > , (25)

217 T(a)

i ™ dk i B. Spin observables
f{fn}=2 fneimk and fﬁl{f(k)}z"‘ Ef(k)emk.
n — I

(22)

1. Random field: Incoherent functions

The FDT violation for the spin autocorrelation and re-
sponse functions has already been studied in detail in Refs.
[26,27. In particular, it was shown that the FD plot ap-
proaches a nontrivial limit curve in the aging regime, with
7 dk XZ=3. We can easily recover the existing results for
C(t,tw)ZJ 7, a0C(k L ty) C4(t,t,), x«(t,t,) from our exact solution§18) and (19) by

o7 settingn=0. It is useful to focus on the aging limit. For-
mally, this is an asymptotic expansion in the lirbjt,,— o
with e<t,,/t<1— ¢ fixed ande, 6>0, to ensure that,t,,,
= dk andAt all diverge and are of the same order. In this limit, the
X(t,tw)=J Eq(k)x(k;t,tw). (23 asymptotic expansiofA3) for the modified Bessel functions
o yields immediately

In Appendix B, we state the Fourier transforms of E48)—
(212), in terms of which Eq(13) becomes

and

An explicit example of a family of short-range correlated

fields, parametrized bg>0, is given by the Lorentzian co- Cyt,t,)~ E arcsi 2ty (26)
variances SUWh t+t,
al _am 2 »
QL,n—m@QL(k)— sinnan cosha(m—[k|). (24 Xs(t,tw) ~ — arccos\/ -~ (27)
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Here and below, the " sign denotes results which are Since bothC,(t,t,) and R.(t,t,) are functions oft,,
asymptotically exact in the aging limit. The limit FD plot only, this also applies to the FDR

corresponding to Eq926) and (27) is contained in Fig. 2
below and the associated FDR is a function of the time ratio

log+21,+15](2t
t,,/t only, Xm(tw):[ ot211+15](2t,)

Ao+ 14](2ty)

X(t,t,)~ t+ty (28) which crosses over from the initial valug,(0)=73 to 3 on
sihrw 2t an O(1) time scale. So, apart from a transient after the
quench, we measudé(t,) =3 for all t=t,,>1; in particu-
It shows a continuous crossover frox(t,t,)=1 for At lar, the limiting valueX(t,)~X5=XZ=1/2 in the aging
<t to X4(t,t,) =XJ=7 for At>t,,. We note that the aging regime is identical to that for the incoherent spin observ-
expansion of the spin correlations and susceptibilit®®  ables. Note that there is no quasiequilibrium regime with
and(19) is dominated by the leading term of the asymptoticX =1 for At<t,,. The corresponding FD plot converges to
series(A3) for the modified Bessel functions, which is inde- a straight line of slopg (see Fig. 2 below
pendent of the ordemn. Therefore, Eqs(26) and(27) in fact
apply to all finite-distance spin cross correlations and suscep- 3. Short-range correlated field
tibilities Cp(t,t,), xn(t,ty). Consequently, the latter produce
the same limiting FD plot and FDRR8) as forn=0.

(32

Next we investigate the effect of short-range correlations
in the random fieldss; on the FDR. The correlations and
susceptibilities of the corresponding observables may be ob-
tained either from a real-space summati®8) or an integra-

As described, the uniform field effectively allows us to tion in the Fourier representatiqi23). Using the latter, we
study the FDR for the magnetization. The corresponding cornote first that the short-range criteridty,|q,| <% for the
relation and susceptibility are most conveniently obtainectovariances implies that(k) = 7{q,}==,q.,e "~ is a con-
from the Fourier transforméB1) and (B2) by settingk=0;  tinuous function. The Fourier transform<(k;t,t,),

the time integrals appearing @(k;t,ty), x(k:t,ty) canthen  y(k:t.t,), on the other hand, satisfy
be solved. One finds

2. Uniform field: Coherent functions

Cr(t,ty) = 2w1(2t,) +4t,[1o+111(2ty)}, (29 clit.tw) 278(k) and xtkit tw) 276(k) (33
mittw) = ol4ly wLio™l1 w) S CJt,ty) ™ Ydtty) ™
Ru(t,tw)=3€" 1o+ 21;+1,](2ty,). (30) in the aging limit, where3(-) is a 2mr-periodic version of the

) ordinary Dirac delta. The normalizations of the right-hand
We have given the respon$e=—dx/dt,, here rather than = siges of Eq.(33) are clear, sinc&((t,t,), for instance, is

the susceptibility because it has a simpler form. Note thabiven by the Fourier integraR2) over C(k;t,t,,) for n=0.
i)oth the correlation_ and response functi¢®28) and(30) are Also, sinceC(t,t,,) and x«(t,t,) areO(1) functions oft, /t
independent of. This can be understood from the fact that, ne aging limit, whileC(k;t,t,), x(k;t,t,,) vanish in the

for T=0 the magnetizatiom=(1/N)Z;s; performs a ran-  game [imit for anyk that is not a multiple of &, Eq. (33)
dom walk with step size-2/N and a time-dependent rate o) jows, This in turn implies that for any short-range corre-
3Nc, wherec is the concentration of domain walls. The |5teq field,

latter can be obtained explicitly from E¢l18) by settingt
=t, and n=1, since Cy(ty,ty)=(si(tw)si+1(tw))=1
_2c(ty). This gives[43] T w) C(t,ty) ~NCo(t,t,) and x(t,ty)~Nexs(t,t,) (34)

provided thaN.=q(0)=X,q, , which estimates the number
c(ty)=3e"2llg+1,](2t,). (31)  of lattice sites over which field correlations extend, is non-
zero. So in the aging limit, the correlations and susceptibili-
; : ties are ultimately just proportional to Eq26) and(27) and
=N(m(t)m(t,))=Cn(twty) follows immediately. AlSO, hence yield the same FDR and FD plot as the local spin
Cr(tw,tw) will grow with rate 2ND(t,), where D fynctions. This statement can equivalently be made in real
=(2/N)?3Nc=2c/N is the diffusion constant. One should space, based on the convergence of the sggiemd the fact
thus havesC(ty, ,ty)/dt,=4c(t,), and from Eqs(29) and  that all finite-distance cross-correlation and response func-
(31) one verifies that this is indeed the case. Similar argutions behave asymptotically as E¢&6) and (27).
ments apply to the respon&g(t,t,,). Brief application of a At finite times, however, we find a crossover between two
field att,, biases the domain-wall motion and hence the randynamical regimes. A scaling analysis shows that the peaks
dom walk ofm; thereafter the random walk is again unbiasedin C(k;t,t,) and x(k;t,t,) at k=0 have widthst~*? and
and so the response must bindependent. The momentary At~ Y2, respectively. Correspondingly, we have growing
bias in the random-walk rates contains the domain-wall conlength scales in real space. These &ge=t¥? for correla-
centrationc(t,,) as an overall factor, and consistent with this tions, corresponding to the typical domain size,
expectation one gefR,(t,t,)~2c(t,) asymptotically. ~ AtY? for the response which reflects the fact that perturba-

Now, since the random walk ofn is unbiased,C(t,t,)
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tions spread diffusively. Whefc ,£,> N, one has an effec- o [ a

tively local observable and we are in the asymptotic regime ~ Xp(L,tw)=5€ J't d7.F| 5, ——2(t=17)

(34). If, however, £¢,¢,<N¢, the fieldse; are correlated v

over distances much longer than the dynamical length scales, X[lg+211+1,](27), (36)

giving an effectively uniform field. One thus expects to get

an FD plot similar to that obtained for the magnetization.where 1F,(«,7;2) is the confluent hypergeometric function

The illustration of the crossover in Fig. 1, obtained by nu-[42]. Equations(35) and (36) are exact and can be used to

merical integration of Eq(23), shows that this is indeed the study the FD plots and the FDR numerically. However, in the

case. aging limit, asymptotic expansions may be substituted for the
nonelementary functions and significant simplifications are

4. Infinite-range correlated field possible. One finds

For infinite-range correlated fields, one cannot use simple
scaling arguments, since the correlations and susceptibilities
contain contributions from all length scales. For the power-
law covariance$25) introduced above, this is reflected in the

2702 (14 o

r (t+t,) 7072

Cp(t,ty)~

singularity ofgp(k) at k=0. Therefore we have to analyze «B } 1 @, 2ty 37)
the full expressions foCp(t,t,) and xp(t,t,) that follow 2’ 2't+t,/)’
from Eg. (23) after substitution ofgp(k), C(k;t,t,), and
x(k;t,t,). Fortunately, for the particular choice gf(k) the o—al2 (14
. . . @ 1 @
results may be expressed in terms of single integrals of the xp(t,ty) ~ F( ) (1a)/2{3<,1_ )
form 7T 2 2
1 a t
1 1+a —Bl—‘W)
Cp(t,tw)—ez(t“w)[lFl(z,z ;2(t+ty,) (2’ 2't)) 38

where B(p,q;x) is the incomplete beta functioB(p,q;Xx)
2(t+t,— T)) =[3dut’~1(1—u)9" ! andB(p,q)=B(p,q;1) is the com-
plete ongf42]. In the random-field limita— 1, we recover

2ty
+ d ’TeTl F 1
0

1l 1+a
272
expansiong26) and (27) for the incoherent functions since

X[lo+1 1](7)] , (35  B(%,%:x)=2arcsin/x, whereas the uniform field limit
0.8 T T T T 1 T T T T
0.9 .
0.6 -
0.8 -
— b N . —
> 07
& 04 - N
o .
= > 0.6 -
02k i 0.5
0.4
I I | | l | | |
00 0.2 0.4 0.6 0.8 1 0'30 0.2 04 0.6 0.8 1
I-CL(t,tw) t, /t

FIG. 1. Normalized FD plotleft) and the corresponding FDR ¥g/t (right) for a random field with Lorentzian covarianceéz) with
a=10®, correlated oveN,=aw cothar~arr sites. In the FD plott is fixed for each curve and varies over the rang® 1, . . .,10°
(bottom to top. The lines first converge towards the straight line with slépra)rresponding to a coherent observattlee magnetization
but eventually, fot=10", cross over to the limit plot for uncorrelated fields. This behavior is also reflected in the evolutkyrtof,).
There, however, we have the freedom to fix either t,,. The plot shows the case of fixeég, which is more convenient for comparison
with simulations, fort,,= 10, . ..,10° (bottom to top.
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0.8 T T T T 1 T T T T
0.9
0.6
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1-Cy(tt,) t 1t

FIG. 2. Normalized FD plotgleft) and the corresponding FDR g/t (right) in the aging limitt,t,,—cc. The bottom curves in both plots
are for the magnetizatio(Sec. Il B 2 and coincide with the uniform field limi&z— O of the power-law field covariances. The intermediate
curves are for power lawmsSec. Il B 4 with exponentsx=0.2,0.4,0.6,0.8bottom to top. The top curves represent the random-field limit
a—1 for power laws, and apply also to any short-range correlated (&dd. 1l B 3 with N.#0 or, in the extreme case, the incoherent
functions of Sec. II B 1.

—.0 can be shown to coincide, usim%,l;x)=2\/;, with 5. Harmonically correlated fields and X

the asymptotic expansions of Eq29) and (30) for the co- The explicit examples given in Secs. 11 B 1-1I B 4 sug-
herent functions. So the power-law covarian¢2s) indeed gest thatX”=3 is a generic feature for the spin observables
allow us to interpolate between the coherent and incoherer®, defined in Eq.(10). To show that this is indeed true, we
observables. For intermediate exponentsd<1, the fluc-  start from the fact that for a general observabigthe cor-
tuations in the observabl®, grow ast,,(!~ "2 and the two-  relation and susceptibility—and hence/t,)C(t,t,) and
time correlation(37) has a plateau at a corresponding valueR(t,t,)—may be written in form(23). By introducing a gen-
for At<t,,; for At>t, it decays as,,*~ ¥'%(t,,/At)*%. For  eralized FDT for the Fourier modes,

the susceptibility, we deduce from EQq.(38 a

At @2 At/t, )12 growth for At<t,, that crosses over to

At~ )2 for At>t,,. Figure 2 shows exact FD limit plots J

that follow from Egs.(37) and (38). The associated FDR R(k;t’t‘”):X(k;t’tW)mC(k;t’tW)’ (40
may be obtained from Eq$37) and(38) as
1—a [2t /t—t al2 we may expres®(k;t,t,,) via Eq. (40) and thereby obtain
w w

the following representation for the FDR(t,t,,) associated
with a generic spin observab@,:

2t
~ +
Xelt,tw) [t+tw 2 t+t, | t+ty,

1 2t, \] 7t
XB(Z 1-=- W)] .

217 7,

39 = dk d
|7 Saxtkittat 2-Cikitt)

In principle, one should first differentiate Eq85), (36) to ~w2m
obtain Ry(t,t,) and (@/dt,,)Cp(t,t,) and then perform the m d

aging expansion, but this turns out to give the same result. f_wﬂq(k)ac(k;t'tw)

Equation (39) is a function oft,,/t only and interpolates

between the FDR28) for the local spin observablesx(

—1) and the constanK;,=3 for the magnetization ¢  This means thaX(t,t,) may be considered as the average
—0). Plots ofXg(t,t,,) for various powersy are also shown of X(k;t,t,) over the normalized distribution of
in Fig. 2. It is remarkable that the FDR again crosses oveg(k)(d/dt,)C(k;t,t,) onke[—a,7]. The FDR for Fourier
from Xp(t,t,) =1 for At<t, to Xp=3 for At>t,, indepen- modes follows from Eq(40) and expression@1) and(B2)
dently of the power-law exponeiat. for C(k;t,t,),x(k;t,t,) as

X(t,ty)=

(41
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[lot+ 211+ 15](2ty)

X(k;tW): 2t,,cosk thW (2t )cosk
e tweosK 4 drel“w™ T lot1.](7
. [Tot141( )]

: (42)
A[19+14](2t,,) —2(1— cosk)

and is a function of,, andk only. Fork=0, Eq.(42) reduces t+t, t+t,
to the FDR for the magnetizatioX(t,) (32 and hence Cd(t-tw):4c( 5 )[pr(t_tw)_c( 5 )
X(0:t,)~3 for t,>1. A scaling analysis of Eq42) shows

that for |k|<= andt,>1 we getX(k;t,)~X(k’t,) with

X(k%t,)~3 for k’t,<1 andX(k’t,)~1 whenk?t,>1. So

Eq. (42) reflects the successive equilibration of increasing xdt,ty) =4
length scales.

Now we can return to the FDR41) for the observable e fact that we find random-walk-related quantities does
Os. For the magnetization—being the coherentpot come as a surprise given that there is an exact mapping
observable—we havg(k) =2 6(k) and Eq.(41) reduces to  of zero-temperature Glauber dynamics in the Ising chain to a
the trivial identity X(t,) = X(0;ty). In physical terms, by diffusion-limited pair-annihilatiofDLPA) procesg45]. The
selecting the coherent observable we only measure the FDRapping follows by assigning to each bondi¢1) the
associated with the infinite length scale. For other spin ob#particle” occupation number b;=3(1-s;s;,4) €{0,1}
servables, being characterized by the functi¢k), the FDR  which signals the presence or absence of a domain wall.
X(t,ty,) contains contributions from all length scales. For theGlauber dynamics for the spins corresponds to independent
long-time limit X*, however, the situation simplifies becauserandom walks for the particles and coalescence of domains
(alat,)C(k;t,t,) develops an infinitely sharp peak lat0 of aligned spins yields particle pair annihilation.
ast—oo. This can be verified by a scaling analysis of Eq. It follows from definition (14) of the defect autocorrela-
(B1). For sufficiently well-behaved functiorggk), the nor-  tion thatCq(t,t,,) =4[ (b;(t)b;(t,) ) — (b;i(t) ){b;(tw))] in fact
malized version of the distributiom(k)(d/t,,)C(K;t,t,) also describes the particle autocorrelation in the DLPA pro-
thus becomes a realization @f(k) and we getX(t,t,)  Cess. We note that E(45) is a nontrivial result. Assuming as
—X(0;t,) ast—o. Taking the limitt,— o then shows that in Ref.[36] that the autocorrelation of the fractia{t) of
X*=1%, as claimed. So for a generic spin observab{&, Particles that still exist at time is given byp,(t—t,) and
again just gives the FDR associated with the infinite lengtithat these particles are uncorrelated with the fractitt),)
scale. The only exception occurs when this contribution is—c(t) of particles that have disappeared via annihilation,
explicitly suppressed. An example of the latter case would b@ne ~ would  conclude  (b;(t)bi(t,))=c(t)p(t—ty)
harmonically correlated fieldsy,=cosnp with 0<p<m:  +c(t)[c(ty) —c(t)] and henceCq(t,t,)=4c(t)[p(t—ty)

. (49

t+t,
c(t)—pra—tW)c( 5 ” (46)

for such observableX(t,t,,) =X(p;t,) and hencex*=1. —c(t)]. This obviously differs from the exact solutigA5).
As an approximation it holds foAt<t,,, but breaks down
C. Defect observables for At>t, where Eq.(45) yields Cq(t,t,)~2t,/(7At?)
_ ) whereas the approximation  gives Cq(t,t,)~(y2
1. Random field: Incoherent functions —1)/(wAt). This shows that two-time correlations in

The defect observabl®, given in Eq.(10) with random, ~ Cq(t.ty) build up via a rather subtle mechanism, the expla-
uncorrelated fields; allows us to study the FDT violation hation of which in terms of the DLPA would probably re-
for local defect correlations and susceptibilities. These fol-quire knowledge of the interparticig.e., domain sizedis-

low from Egs.(20) and(21) by settingn=0, giving tribution. Similarly, it appears that resu{g6) cannot be
obtained in a straightforward way.

Now we turn to the dynamics of Cy(t,t,),
xd(t,ty)—examples of which are shown in Fig. 3—as given
X[ 1o+ 1,12t +1,), (43) by Egs.(45) and (46). The equal-time value o€ty ,ty)
=4c(t,)[1-c(ty)]~4c(t,) ~2/\/mt,, for t,>1 decreases
with t,,, reflecting the decreasing number of particles in the
Xo(ttw) =2€" {[1o+111(20 ~ lo(t=tw)[lo+ 11 ](t+t)}. DLPAWprocess(org domain walls ?n the spin c%a)inln the
(44 regime At<t,, the two-time correlation Cy(t,t,)

These results can be written in a more physically intuitive~4c(tw)P:(At) drops from its initial value due to the
way in terms of the concentration of domain wail), Eq. rgndom-walk motion qf the_: partlcles around their initial po-
(31), and the return probabilityp(r)=e "l4(7) of a  Sitions att,. In the aging limit of largeAt andt,,, one has
continuous-time random walker on a discrete, onethe expansion Cy(t,ty) ~2/(mt+t,) (LNt =ty
dimensional lattic§44]. Expressing all time dependencies in —1/yt+t,). This crosses over from Cy(t,ty)
Eqg. (43) and(44) via c(t) andp,(7) yields the exact identi- ~2/(7+2Att,) for At<t,,, where it connects smoothly to
ties the initial drop forAt of O(1), sincep,(At)~1/y2At for

Cult,ty) =26 2t —t,)[lo+11](t+1,) —e 20+t
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FIG. 3. Defect autocorrelatiofieft) and susceptibilityright) vs At for waiting timest,,= 10,1, . . ., 10@. Increasing waiting times

corresponds to decreasing values in the plot for seall

large At, to Cq(t,t,)~2t,/(7At?) for At>t,,. The inte- t(t+1,)
grated responseq(t,t,) is nonmonotonic inAt and in- Xg(t,ty)~ — (49
creases on a®(1) time scale inAt from its initial value tu(t+ty) +(t=ty) Vo=t

Yd(tw tw) =0 to a plateauyy(t,t,) ~2/\/t,, for At<t,, ac-

cording to y4(t,t,)~4c(t)[1—p(t—ty)]. This crossover

is clear from the spin-chain dynamics: the perturbation assoFhe FDR(48) is a function of the time ratit), /t and crosses
ciated with x4(t,t,) is SH=—hss;,; which simply in- over fromXq(t,t,)=1 for t,,/t—1 to Xy(t,t,) =X5=0 for
creases the coupling between siigs +1. This enforces t,/t—0 (Fig. 4). This seemingly paradoxical result can eas-
alignment of the spinss; and s;,; and hence increases ily be explained in terms of the expansions given above. In
(si(t)si+1(t)) on a microscopic time scale. In the aging the regimeAt<t (which is equivalent ta\t<t,,, as consid-
limit, the leading term in the integrated response is justered beforg we have, up to subleading corrections for
Xd(t,ty) ~ 217t which connects to the plateanu(tt) — —c, Cy(t,t,)~4c(t)p(t—t,) and xqtt,)~4c(t)[1

~2mt,, for At<t, but eventually decreases ag(t.tu)  —p/(t—t,)]. So the equilibrium FDT indeed holds in this
~2[JmAt for At>t,,. regime and the DLPA process is, to leading order, just an

For constructing a FD plotFig. 4), we are interested in  ensemble of independent random walks. Now recall that
keepingt fixed and varying,, between O.ar)d the functions p.(At)~1/ > At for At>1. So at the point where this ap-
Cq(t,tw) andyq(t,ty) are then monotonic ify,. In fact, the  oroyimation breaks downyt~t, the value of, e.g.Cq(t,t,,)
(ixact expreSS|(2)n(;45) a/nzd (462) satlsty %E’(t’t)h_. Cd(lt’tyv) decreases to an arbitrary small fraction @f(t,t) ast in-
_Xd(t'tW)+4((_: [(t+t,)/2]=c (t_))' viding this relation = o aqeq This leads to a straight line segment which eventu-
by the equal-time valu€q(t,t) yields the relevant normal- ally covers the whole of thénormalized FD plot while the
ized quantities size of the nontrivial region shrinks as\t/ In the latter part,

for C4(t,t,)<1/\/7t, one has from the aging expansions of

C2<t+tw) e Cq(t,ty) and xq(t,ty),
1-Cy(t,ty) = xalt,tw) + S(O[1=c(D] R
N t—t, L= xa(ttn)~ =+ 5~ Ciltt). (49
= xd(t,ty) +0O ﬁm . (47

Hence the FD plot indeed turns horizontalégt,tw) ap-
In the limit t—o the extra term in Eq47) vanishes and we proaches zero, consistent with Eg8). In summary, a FD
get 1-Cq(t,t,) = xq(t,t,) for all 0O<t,/t<1. This, how- plot is not the appropriate representation for the FDT viola-
ever, does not imply that the equilibrium FDT holds, i.e.,tion measured by the defect autocorrelation and response. A
Xq(t,tyw)=1. In fact, working out §/dt,)C4(t,t,) and plot of the FDR as a function df,/t, however, converges to
Rq(t,t,) from Eqgs.(45) and(46) and expanding their ratio in the nontrivial limit curve given by Eq48) as times diverge,
the aging limit give see Fig. 4.
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FIG. 4. Normalized FD plotleft) and the corresponding FDR g/t (right) for the defect autocorrelation and susceptibility. In both
plotst is kept fixed, giving a one-to-one correspondence of the curves, and varies over thessdifédotted, 1042 10%,10%2 107 (solid).
The curves ofX4(t,t,,) for t=10%210? are almost indistinguishable and very close to the limit cuAg.

2. Uniform field: Coherent functions all cross susceptibilitiesnz0) exactly balances the local

For uniform covarianceg, =1, the defect observabe, ~ SUSCEPtibilityx(t,t) = xo(t,tw). _ _ ,
is equivalent to the total energy of the system. According to A FD plot for the energy is obviously just a horizontal line
Eq. (23) we haveCq(t,t,)=C(0:t,t,), which may be sim- and the correg,po.ndlng. FDR X;e(t,t},v)=Xe=Xd =0. This
plified to give matches our findings in Sec. II B in the sense that the FD
plot for the coherent observable is a straight line whose slope
Cult,ty) =46~ 215+ 1,](2t) — e~ 20+t is theX™ of the incoherent observable.

X[3lgt+4l+15](2t+2t,,). (50) 3. Short-range correlated field

We have seen above that for local defect observables, the
This result again has an analog in the associated DLPAD plot is not appropriate for determining FDT violation
process, where it describes the normalized two-time correlagffects, since it converges to a straight line in the aging limit.
tion of the total number of particlesV, Cgt,t,) It turns out that the same holds for defect observables de-
= (4IN)[{(M)Mty)) — (M)W Mty))]. Aresult similar to  fined by short-range correlated fields. To see this, we recall
Eq. (50) was given in Ref[46], for initial conditions corre- from Eq. (13) that, e.g., the correlation functiod(t,t,,) of
sponding formally to equilibrium at inverse temperaturethe observable is a weighted sum of the nonlocal defect cor-
1/T=—o. Up to a factor of 4 which appears to be missing in relations, and focus on the regimé=0(1) that dominates
Ref.[46], it coincides with Eq(50) for larget,,, where one the FD plot for larget,, or t. From Eq.(20), one then easily
finds the simple scaling form Ce(tatw)~4/\/;(l/\ﬁ shows that whenever a nonlocal term with give# 0 is of
—14/t+t,). At equaltimes, fluctuations in the energy fol- the same order as the local contributiog(t,t,) = Co(t,t,)
low as C(ty,,ty) ~(2— v2)Cq(tu,t,). This shows that in ~2/Vmt,e 2!(At), it can be written as
Ce(tw tw) =2,Ch(tw tw), the nonlocal i #0) terms make a
contribution — (y2—1)Cg(ty.t), of the same order as the
local term but with opposite sign. Fat<t,,, the two-time Ch(t,ty)~
correlation C(t,t,,)~Cq(ty,t,) has a plateau but it de- \/W_vv
creases a€4(t,t,)~2t,,/(Aty7wAt) whenAt>t,,.

By settingk=0 in the Fourier transforntB4) we find that  In the same regime, the expression for the nonlocal suscep-
xo(t,ty)=x(0;t,t,)=0 at all times. This is for the simple tibility x,(t,t,) is identical apart from a minus sign. This
reason that the perturbation is proportional to the Hamil-shows that, whatever the short-ranged field correlatopns
tonian and therefore just rescales the temperature, which olbke FD plot of x(t,t,) versusC(t,t,) for the observable
viously has no effect in th&—0 limit considered here. We considered becomes trivial for long times, just as in the case
note thaty(t,t,) = Z,xn(t,ty) =0 implies that the sum over q,=4,,. We, therefore, focus on the FDR in the following,

e AL (AL). (51)
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which requires analysis ofd(dt,,) C(t,t,,) and the response when normalized byR4(t,t,,), i.€., two infinitely sharp peaks
R(t,t,)=—(d/at,)x(t,t,) and should become nontrival in at 0" and 0. ThereforeR(t,t,,) ~NRq4(t,t,,) for any short-
the aging limit. range correlated field withl;#0.
By analogy with the results presented in Sec. IIB3 for Since R(t,t,)~NR4(t,t,) and  @/dt,)C(t,t,)
spin observables, we will show that the FDR becomes iden-N(d/4t,,)C4(t,t,), any defect observabl®, with short-
tical to that for the incoherent functions in the aging limit. range correlated fieldg; and N.#0 ultimately gives the
The procedure is again to prove that the Fourier transformsame FDR as the incoherent functions. The scaling of the
of the defect functionsd/dt,,)C(k;t,t,) andR(k;t,t,) are  peaks in Egs.(52) and (53) implies associated time-
representations 0 in the aging limit and with appropriate dependent length scales in real space. As in the spin-
normalization. observable case, the FDR will thus display a crossdésee
ExpressiongB3) for C(k;t,t,,) and the one that follows Fig. 5 when these length scales become comparable with the
from Eq. (B4) for R(k;t,t,,) are rather complicated and it is length over which the fields; are correlated. We note finally
a priori not clear how they behave as times diverge.that, in contrast to the respon&&(t,t,) discussed above,
Asymptotic expansions in the aging limit,— with e  the integrated response or susceptibility(t,t,) displays
<t, /t<1-6 fixed (¢,6>0) and|k|<K whereK=c/\t,  Somewhat unusual behavior; e.g., the local vajyét,t,)
(c>0 arbitrarily large but finite however, capture the rel- dominates the nonlocal terms for all times, so that to leading

evant features o€(K;t,t,,), R(K:t,t,) and have a consider- order there is no real-space length scale associated with the
ably simpler form: defect susceptibility. One also finds nontrivial features in the

FD plots and FDRs for the cross correlatio@is(t,t,,) and
4 (1 oo o 1 s susceptibilitiesy,(t,t,,) [47]. However, in the aging limit
C(K;t,ty)~ —=1{ —e K WIME) o= K(t+ty)/4 and for any fixedn#0 the FDR for the local observable

V[Vt vttty (n=0) is recovered as in the spin-observable case.
+2ke™ k2(t+tw)/2[ erfi kt2+ tw 4. Infinite-range correlated field
t

We next consider the FDR for observables defined by
m” infinite-range correlated fields. As for short-range correlated
w

—erfi< k (52) fields, we will not discuss the integrated quantite§,t,,)
2 andyx(t,t,,) in detail. One finds again that these give a trivial
FD plot for long times, although the argument for this is
1 [ty o 242, 2 somewhat more subtle than in E§1) because one needs to
R(K;t,ty)~ \/__(T) k?e~ K ("~ twh/(4n), (53)  consider an infinite range of distances
it The exact expressions for the two-time correlation func-
tions and susceptibilities for defect observables with power-
law covariances follow from Eq(23) by substitution of
C(k;t,ty), Eq. (B3), x(k;t,t,), Eq. (B4), and gp(k), Eq.
(25). The respons&(t,t,,) is then obtained frony(t,t,,) by
R(t,t,)=—(d/aty) x(t,t,) as usual. The resulting equations
. 2 ) are rather bulky and too complex for a meaningful discus-
In Eq. (52, the growth of erfik)~e*/(Jmx) is over-  sjon. So we immediately turn to the aging limit, where we

compensated by the exponential prefactor and so we cagan use the following, asymptotically exact, approximations.

makeC(K;t,t,) arbitrarily small by increasing. For larger  First, we replace the exact expressions in E2@) for

k, [k|>K, the values ofC(k;t,t,) as given by Eq(B3) also ¢ (k;t,t,,),R(k;t,t,) by Egs.(52) and (53). Although Egs.

turn out to be insignificant. Therefor€(k;t,t,,) develops an (52) and (53) do not hold outside the randes[ — K, +K],

infinitely sharp peak of widtlD(1/yt,) atk=0 in the aging  the contributions to thi integrals are subleading. Second, as

limit and becomes a realization é{k) when normalized by the integrands have infinitely sharp peakkatO in the ag-

Cq(t,t,), in analogy with Eq(33). Differentiating Eq.(52)  ing limit, we may replacegp(k) by the leading term of its

with respect ta,, turns out to reproduce the rigorous expan-expansion ak=0, i.e., replace sit(2) by k/2 in Eq. (25).

sion for (9/4t,)C(k;t,t,) and similar arguments apply. This in turn allows us to extend the limits of integration in

Hence, C(t,t,)~NCq(t,ty) and @/ at,)C(t,t,) (23 from —ar,+ 7 to — o, +, whereby we again just ac-

~N(dlét,)Cqy(t,t,) for any short-range correlated field cumulate subleading errors. Having made these approxima-

with N.#0. tions, which still yield asymptotically exact results, the
Expansion(53) for the response functioR(k;t,t,) also integrations can be evaluated and we get

peaks sharply in the regiofk|<K neark=0; it follows

from Eq. (B4) that outside thik range,R(k;t,t,,) is insig-

nificantly small again. We have, howevd®(0;t,t,)=0 at Colt,ty)~ T

all times. NeverthelessR4(t,t,) yields normalization and

the ratio of both vanishes in the aging limit for aky: 0

(modulo 27). SoR(k;t,t,) becomes a realization af(k)

erfi(x) is the error function with imaginary argument:
erfi(x) = (1/i)erf(ix) [42]. Note that the arguments of all ex-
ponentials and the erfi’'s are &f(1) if t,,/t andk are in the
specified range. Foik| larger thanO(1/\t,,), results(52)
and(53) do not apply.

o ( tla-1iz(g2_y 2)-al2

t+t
—(t+tw)(1+“)’2|:(a; ZIW)], (54)
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FIG. 5. Left: Time evolution of the defect-observable FDR for a random field with Lorentzian covari@emda= 107, correlated
overN,=am cotham~a sites. For each curvg, is kept fixed, varying over the rangg=10", . .., 1, from bottom to top. The curves
for t,=10P,10', 107 are flat; in this regime, the observable is effectively identical to the energyt Fel0®,10%,10°,10° we see the
crossover to the limit curve fdr,— oo given by Eq.(48) and corresponding to the incoherent observable. Right: Limit curves of the FDR vs
ty,/t for t,t,—c. From bottom to top, these correspond to power-law covariances with exparedil,0.2,0.4,0.6,0.8. The top curve
shows the random-field limie— 1 for power laws, and also applies to any short-range correlated field, Sec. Il C 3)\y#t@ or, in the

extreme case, the incoherent functions of Sec. Il C 1.

2
Re(t,ty) ~ ;af

1+«

2

twt(afl)/Z(tZ_ t\?v) —(1+ a/2),

(59
where we have introduced the shorthand

-ty

11 —(1+a)2
F(a, o 1-(1-a)2

B 11 a t+t,
27 20 2t

(56)

In the limit «—1, Eqgs. (54) and (55 reduce to the
asymptotic expansions of the incoherent functi@npét,t,,),

Rq4(t,ty) while «—0 gives the asymptotic expansions of thell B 5.

coherent ones, i.eC(t,t,) from Eq. (54) andRg(t,t,)=0
from Eq. (55). So the power-law covariancé25) again al-

Yt 1+t—tw l—a+1+a [t [t—ty al2
Pt tw) ty | 2 2a Vt+t,l t
XF Saanlle 5
@ : (57

The FDRXp(t,t,,) is a function oft,,/t only and interpolates
between the FDR48) for the local defect observables (
—1) andX(t,t,,) =0 for the energy &§—0). For any power
0<a<1, Eq. (57 crosses over fronXp(t,t,)=1 for At
<t to Xp(t,t,) =Xp=0 for At>t,, (see Fig. 5.

5. Harmonically correlated fields and X

In contrast to spin observables, it appears that for defect
observablesD4 we generically findX*=0. To prove this
claim we may again follow the approach presented in Sec.
Introducing a FDR for defect Fourier modes
X(k;t,t,,) according to Eq(40) based on the two-time defect
correlation functionB3) and susceptibilityB4) allows us to

low us to interpolate between local and global observableswrite the FDR for any defect observable in foi@l). The

For intermediate exponents<Qx<<1, the two-time correla-
tions in O4 decrease as, Y?At~%? in the regime kAt
<t,, and cross over tt, At~ G+ for 1<t,<At. The re-
sponseRp(t,t,,) behaves as, YAt~ @72 for 1<At<t,,
andt, At~ T2 for 1<t,<At. An aging expansion for the
FDR again gives nontrivial curves.

The derivative t,>1.

full expression forX(k;t,t,) is rather complicated and, in
contrast to Eq(42), retains a nontrivial dependence kt,
and t,. The only general features ar¥(0;t,t,)=0,
since X(0;t,t,)=Xdt,t,)=0, and X(xm;t,t,)=1
+0(\t,e *w) being independent of and close to 1 for
For intermediate values <Ok|<w, the FDR

(alat,) Cp(t,ty,) follows correctly by differentiating expan- X(k;t,t,) can, in fact, take arbitrarily large values for appro-

sion (54) which, together with Eq(55), yields

priatet,, andt. To repeat the argument of Sec. Il B 5, how-
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ever, we just have to be able to take the litritoo for fixed  relations ofs;s;. 4 in the aging limit.

and finitet,,. A scaling analysis of {/dt,,)C(k;t,t,,) as ob- By a similar reasoning, we can now predict the FD be-
tained from Eq.(B3) shows that this quantity develops an havior of higher-order observables of the form

infinitely sharp peak ak=0. Hence, the normalized distri- K

bution of q(k)(a/dt,)C(Kk;t,t,) over — m<k<m becomes, Oj(k)=2 &ll s, (59

for sufficiently well-behaved functiong(k), a realization of ool !

‘5(k) ast—o. Remarkably, the FDR for defecdé(k;t,t,,) with k=3 andj;=0; j,, ..., specify the relative dis-
approaches a simple, smooth function erck<<s in the  placements of the spins in théh-order products. For evdaq

same limit, each ternil 7Si+i, again has a sign depending on the number
K K of domain walls between spinsandi+j,. In the aging
lim X(k;t,t,) =2 sir® — 1+4twco§—) limit, configurations where more than one domain wall oc-
t—oo 4 4 curs can be neglected, so that we can replace the product by

4t 2 1 SiSi+j,- By the same argument as above, this is essentially
- SI - . . . .
X(2—e "w ) (58) equivalent toj,s;s; .1 and so should again giv§“=0.

] For oddk, on the other hand, the sign &f,s;,; is es-
Together, these two facts imply that out of the spectrum Okgptiajy determined by the sign of the domain which the
FDRs X(k;t,t,) for Fourier modesk, the long-time limitt ~  gnin o finds itself in. The leading contribution is now given
— ggain selects the contributions associated with |nf|n|te)Oy configurations with no domain walls betwesn and

length scalesK=0). These are, in the limit, given by Eq. s, = Configurations with at least one domain wall are again
(58) and equal to zero. The FDR) for defect observables suppressed in the aging limit. We can, therefore, replace the

X(t,t,,)—0 thus vanishes as— regardless of the choice ; : . !

. . . . roduct simply bys; to leading order, giving an asymptotic
of g(k), except in pathological cases as d|scusse_d n SegDR of X°°=p1)//2 £I for genuir?e first-o?der gpin obger\?ables.
B El)t ;\Iote th?t becau;e qu?S% for II'(: 0 gl\;ets a_";?c'f*gng The fact that observables of even and odd order behave in
result for anyt,,, one in fact has lim... X(t,t,) =X"=0, different ways can also be motivated mathematically from

without needing to také,— . : : it
We note finally that the behavior at short wavelengths isthe hierarchy of the equations obeyed by the multispin

. correlation functions where the even and odd ordetsrn
rathgr more complex for defect ot_)servables than for Spins. 1y, 4 4 decouple complete89]. This is a peculiarity of the
particular, even for what one might expect to be “equili-

brated” lenathskt. 1 it i ¢ true thatx (Kt t one-dimensional Ising model, whereas in the generic case
rated waveleng skty>1, It 1S not trué tha (kit, W)_ one would expect all levels of the hierarchy to couple to each
~1 for all timest, and X deviates significantly from this

ol lue for | ime diff &g b other, resulting in a unique value of”. We indeed find
fsr'gnnﬁ’ E(\q’a(gg) or large time ditlerenced>1,, as can be seen strong evidence for this in the two-dimensional case below.

From a more physical point of view, the existence of two

different values oX” could be related to the fact that in the

D. Physical discussion one-dimensional chain &=0 one has both a critical point
We saw above that apart from pathological exceptions alfnd an ordered phase. The resxit=0 for defect observ-

spin and defect observables giwdentical values for the ab!es c_ould thus be related to the ordinary results for coars-
asymptotic FDRX”, with X*=1/2 for spin observables and €Ning in d=2 after a quench to an ordered phase, while
X*=0 for defect observables. These slopes are most easify —1/2 for the spins would reflect the critical aspects of
read off from the FDT plots for the coherent observablescoarsening al =T.=0.

(magnetization and energy, respectivelwhich become It might be interesting—though ratht_er complicated—to
straight lines in the long-time limit. use the methods described above and in R9] to study

It is natural to ask how these results would extend tohigher-order observables different from E§9) for which
observables other than those we have considered, such § above leading order approximations do not apply, for
O=3€:5;S;+» which involves spin pairs at distance 2. We &X@Mple, FS;S;11—8 11512+ S+, which corresponds
have worked out explicitly the FD properties based on thd© & quadratic operator in bond variabled;ld ;. We are
general solutions given in Ref39] for the coherent and currently exploring this issue. _ o
incoherent versions for this observalh7]; one finds that To recap, the central result of this section is teinosy
they are, up to subdominant corrections, identical to those foll observables of forni59) interpolate between an equilib-
O=23,€sS ... The physical interpretation is simple: riumlike behaV|_or withX=1 and an asymptotic FDK".
sisiso=—1 if there is exactly one domain wall between The latter are given by the valuesXtk—0), as was argued
spinsi andi + 2, while s;s;, ,=1 if there is no domain wall I Refs.[3_3—3£‘i. We have shpwn that the most (_efflment way
or if there are two. The last alternative, however, is supOf extractingX™ is by studying coherent functions. These
pressed in the aging limit where typical distances betweefesults motivate the following section where the Bing
domain walls scale as\t, and SO S .,~SS i1 model is studied at criticality.
+5s;41Si+o— 1. For the coherent observablg,&| €€ ]
=1), this directly explains our observation; for the incoher-
ent version (,= (), it follows from the fact that the cor- In this section, we report on numerical simulations of the
relations ofs;s;;; ands;. ;S;., are identical to the autocor- 2d Ising model. It is defined by the Hamiltonian

Ill. THE 2 d ISING MODEL
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FIG. 6. FD plots for spin autocorrelation and response. Three 0 0.2 0.4 0.6 0.8 1
waiting times,t,, =43, 179, and 460, are represented by squares, Cs(t, ) — Cs(t, )

circles, and triangles, respectively. The dashed line with slope 1 . . o
shows the equilibrium FDT. The full and dash-dotted lines have FIG. 7. Tentative extrapolation of the infinite-time slope of the

slopesX”=0.34 andX*=0.26, respectively; these are discussed inFD plots of Fig. 6. The lines are only suggestive, indicating that an
the text. asymptotic FDR ofXZ=0.34 is compatible with the data in the

regimeCy(t,t) — C((t,t,)=1. The different symbols have the same
meaning as in Fig. 6.

H=- OED SiSj (60 FD plot for the spin autocorrelation and susceptibility. A very
similar FD plot has been reported in R¢R9], although a
wheres; (i=1, ... N) areN Ising spins located on the sites somewhat different susceptibilitﬁngTRs(t,7-) was plotted
of a square lattice with periodic boundary conditions andthere, so that the FD plot looks reversed compared to Fig. 6.
linear sizeL; the sum is over nearest neighbor pairs. WeOQtherwise, we find the features anticipated in Sec. | C. The
perform Monte Carlo simulations using a standard MetropoD plot is characterized by an initial part which follows the
lis algorithm where the spins are randomly updated. Onequilibrium FDT, corresponding to short, equilibrated length
Monte Carlo step represerisattempts to flip a spin. scales. For larger time differences, the FD plot deviates from

The system is prepared in a random state, correspondinge FDT in a nontrivial manner due to the nonequilibrated
to an infinite initial temperature. It is then quenchedtat fluctuations at small wave vectors. In the limit of large time
=0 to the critical temperaturé,= 3In(1+2). As stated in  differences the FD plot has a nonzero slofie, in contrast
Sec. | D, we focus on the four natural FD relations for theto the zero slope obtained below the critical pofit8].
Ising model, constructed from the coherent and incoherenthese features make the FD plot rather similar to the one
dynamical functions of spin and defect observables. The sysgbtained ind=1, see Fig. left). Note also that a clea,
tem size we use is different for coherent and incoherent obdependence remains in these FD plots, the nonequilibrium
jects. Incoherent objects reflect the behavior of individualpart becoming smaller for largey, [29,32. This implies, in
spins or defects, and simulating a very large system is adarticular, that Eq(6) does not hold and that the FD plot we
vantageous in that it makes an average over many initialise, witht—t,, instead of,, as the curve parameter, does not
conditions unnecessary. Coherent objects sudgtst,) or  directly give the FDR, as explained in Sec. | A. However, as
Cr(t,ty), on the other hand, have an amplitude of the ordekhoroughly discussed in Ref29], X can still be read off
of 1/N. One should thus simulate many initial conditions of from the FD p|0t, due to the asymptotic Sca”ng of the cor-
the smallest possible system, with the opposite constrairig|ation and response functions, as reviewed in Sec. I C.
that the system has to be out of equilibrium even for the The infinite-time value for the slope of the FD plot for the
largest simulated time scalégn,, giving the condition o4 Ising model was estimated in R¢R9] asX? =0.26. We
&(tsim)<L. Our results are obtained withyn,=10°, L yecognize from Fig. 6 that the crossover frog1 to XZ

=300 for coherent functions, and=500 for incoherent _q zxag place over a very small range of the correlator, and

ones. Only a few samples over initial conditions are necesg ¢ 5 precise determination of the infinite-time value of the
sary for incoherent correlation functions, while 1000 initial EpR s difficult. A tentative numerical extrapolation is

conditions were sampled for coherent ones. This is also thgy,;\n Fig 7, where the quantity [ xd(tt,)
number of realizations necessary to get the four susceptibili-_X (o0t )]/é (tt ') is plotted againsC(t,t)—C (St t ")V
S 1 WL S\hrtw S\t s\trtw/

ties we have com_puted. . . . as the abscissa approaches.4., for large time differences
abl\é\/: annc()jwthdeensfl;ﬁet:Léza;gcs;;lgz,ss:\?gtlyrllgsw'th spin ObserV'the ordinate should converge ¥ . The figure shows that

' the valueXZ=0.34 is compatible with the data, but even
though we use larger waiting times than in R&9] there is
substantial scatter in the points. However, we have more pre-

The two-time scaling behavior of the incoherent spincise estimates oXg to guide us, as we now describe.

functions C4(t,t,,) and x4(t,t,) has been the subject of a  The study of the model id=1 in Sec. |l showed that the
number of publications, as described in Sec. | C. We refer tarossover fromX=1 to Xg for spin functions reflected the
the references cited there and directly present in Fig. 6 théifferent dynamics of large and small wave vectors which for

A. Spin observables
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FIG. 8. FD plots of correlation and susceptibility for the mag-  FIG. 9. FD plots for defect autocorrelation and susceptibility.
netization. The three curves are for waiting timgs-46, 193, and  Data for two waiting timest,,= 43 (squaresandt,,= 179 (circles,
720 (bottom to top. The curves fot,,= 193 andt,,= 720 have been are presented. The second one has been vertically shifted for clarity.
shifted vertically for clarity, since they would otherwise overlap The full lines represent the equilibrium FDT.
with the curve fort,,=46; the unshifted curves all pass through the
origin as they should. The dashed line is the equilibrium FDT. TheAgain an apparently very simple result is obtained, with the
full lines have slopeX;,=0.34. FD plot very well fitted by the equilibrium straight line with
X=1. This is an unexpected result, since the system is far
thed=2 case would be defined accordingkig(t,)=1. The from equilibrium as was demonstrated by the study of spin
dynamical behavior of the small wave vectors was governe@bservables in the preceding section. It could also be taken to
by the asymptotic FDRZ . This suggests that a much sim- IMply, as in Ref[36], that the asymptotic value of the FDR
pler measurement of* should be possible by focusing on associated with the defects has the equilibrium vakje
thek— 0 limit, i.e., by measuring the correlation and suscep-— L _ . .
tibility of the magnetization densityn(t). The resulting FD ~ Our above study of thed model again clarifies the situ-
plot is reported in Fig. 8. As for thedLcase, a very simple ation. There, we found.that the incoherent dynamlpa! func-
result is obtained, with the FD plot extremely well fitted by g tions of _t_he.defects exh|b|ted a crossover from egwpbnum to
simple straight line. The fit holds for several decades of timen°nequilibrium behavior, but that the nonequilibrium part
t,<t<tgm, for each waiting time,, that we have consid- Was barely visible in a FD plot, since the crossover occurs
ered, providing strong evidence that(t,t,)=X7, at all when correlators have already decayed to very small values.

times. Furthermore, the slopes of the three curves in Fig. g’h|s suggests that the apparent equilibrium behavior ob-

are very close to one another, and this allows us to report th erved in S|mulat|9ns_for thed?Ising and Ij Frgdrlckson— :
ndersen models is simply a good approximation to numeri-

cal data, but may miss nontrivial FD relations at large times
due to limitations in the numerical analysis. However, as for
the spin observables, the solution to this problem is straight-
This is the value we used to fit the data for the incoherentorward and consists in focusing on tke-0 limit. We thus
spin functions in Figs. 6 and 7, demonstrating that the datévestigate next the coherent functions for the defects which
are consistent with the equali¥§; = X,. This is somewhat are the autocorrelation and susceptibility for the energy den-
different from the value reported in R¢R9], but we believe sity.

that our measurement from the magnetization is much more The resulting FD plot for the energy density is shown in
reliable than the extrapolation of the incoherent spin funcFig. 10. As for the magnetization, very good fits by pure
tions, as explained above. We note also that this value is istraight lines are obtained, implying the equalKy(t,t,)
extremely good agreement with the two-loop expansion=X; . Note, however, that these plots have more noise than
value reported in Ref33]. However, unlike the d case, we  the ones for the magnetization. This is due to the fact that the
do not have a simple physical argument to explain the actualbscissa now involves a genuine connected correlator, in

X =0.340+ 0.005. (62)

numerical value. which the nonzero average of the energy density needs to be
subtracted off. Nonetheless, the slopes of the FD plots in Fig.
B. Defect observables 10 are very close to one another and give the result
We now turn to defect observables. The simplest func- Xz =0.33+0.02. (62)

tions to consider are the defect autocorrelation function and

the conjugate susceptibility. These quantities have been stud- An important outcome of this paper is that this value is
ied recently for kinetically constrained Ising modéis par-  compatible, within error bars, with the value reported above
ticular, the Fredrickson-Andersen model id)1 where they for the asymptotic FDT for the magnetization and the spins.
were shown to give rise to simple FD pld6]. We present This strongly suggests that the various infinite-time FDRs
the corresponding FD plot for thed2sing model in Fig. 9. that we have measured in thel 2sing model are all equal,

016116-17



MAYER et al. PHYSICAL REVIEW E 68, 016116 (2003

2

ACKNOWLEDGMENTS

We acknowledge financial support fromst@rreichische
Akademie der Wissenschaften and EPSRC Grant No.
00800822(P.M.), The European CommunityMarie Curie
Grant No. HPMF-CT-2002-0192,7 CNRS and Worcester
College, Oxford(L.B.), EPSRC Grant No. GR/R83712/01
(L.B. and J.P.Q, the Glasstone Fund.P.G), and Nuffield
Grant No. NAL/00361/G(P.S). Numerical results were ob-
tained on OSWELL at the Oxford Supercomputing Center,
Oxford University, UK.

1.5

Xe(t, tw)
—_

0 L8 ] 1 ]
C (t t) _ Cz(t t ) APPENDIX A: MODIFIED BESSEL FUNCTIONS
e ) e YW

FIG. 10. FD plots for the energy density. The three curves ar Here we briefly summarize the main properties of the
for t,— 80,193, 464(bottom o top. The curves fort,~ 193 and emodlfled Bessel functions,(x) that are releva.mt. for the
analysis given above. A comprehensive description may be

t,=464 have been vertically shifted for clarity, and would other- . . .
wise again pass through the origin. The dashed curve is the equﬁpund in Ref.[42]. For integer orden, I,(x) has the integral

librium FDT; the full lines have slop&>=0.34. representation
mde
In(X)= | —cogne)e*®*, (A1)
0
and that the critical point of thed?Ising model is described
by a single new universal quantity from which the functional relations
J 1
XZ = X=X = X2 =X*~0.340. (63) () =2[ln-1+1n1](%)
and
SUMMARY AND DISCUSSION n
In this paper, we have studied the relation between two- 7'“()():['“‘1_'“”]()() (A2)

time multispin correlation and response functions in the non-

equilibrium critical dynamics of Ising models, analytically in follow immediately. In particular, it is clear from E¢A1)

thed=1 case, and numerically ih=2. We have shown that thatl _,(x)=1,(x) andl,(—x)=(—1)",(x). The aging ex-

FDRs, while observable dependent, fall into well-definedPansions of our results are based on the asymptotic formula

classes, which are qualitatively similar to those observed in

various glassy systems. All FDT violations can be under- | (x)=

stood by considering separately the contributions from large . V2%

wave vectors, which are at quasiequilibrium and obey the

FDT, and from small wave vectors where a generalized FDThich applies in the limit of large argumentsor fixed order

holds with a nontrivial fluctuation-dissipation ratiX” n. For the derivation of the Fourier transforms of the multi-

=X(k—0). In d=1, we find through exact calculations Spin correlation and response functions, we use

X*=1 for spin observables and”=0 for defect observ-

ables. Ind=2, we find numerically a uniqu&”=0.34 for > e X (a)=e? 0S¥, (A4)

all observables. These results suggest that the definition of an n

effective temperaturd .«=T/X”* for large length scales is

generically possible in nonequilibrium critical dynamics.
Further, this work also suggests many interesting lines for

future investigation. An important question is what are the

limiting FDRs in diffusive models that are analogous to the —ink

d=1 Ising model but have glassy features, for example, the zn: e (a)[lhrm(b) +1h-m(b)]

one-spin facilitated Fredrickson-Andersen modéB] or

symmetric plaquette mode[86]. Also, it would be interest-

ing to confirm our results for thed?lsing model by analyz- =2Ty

ing higher-order correlation functions by means of the renor-

malization group techniques used in Ref83-35 to  where Eqs(A5) and (A6) follow from Eq. (Al), the well-

confirm the uniqueness of the FDR. This would make thisknown identity(A4) and trigonometric relations. In EGAB)

function an interesting quantity to study in more generic non0<a<b is required, A=\a’+b?+2abcosk and the

equilibrium situations such as driven interfaces or driven dif-T,(x) = cosfiarccox) are Chebyshev polynomials of de-

fusive systems. greenin x.

X 1—4n?
1+ +0
8x

X2

E e—ink|n_m(a)|n+m(a)=|2m 2aco$k>, (A5)

b-+acosk
T) In(A), (A6)
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APPENDIX B: FOURIER TRANSFORMS

The Fourier transforms of spin correlation and response functi®)sand (19) follow immediately when using EqA4):

2ty
C(k;t,t,)=e (tHtw(l-cosk) 1+f dre” TONK Io+1,](7) }, (B1)
0

t

1
x(kitty) =5 | dre (707080 214421, +1,](27). (B2)

tw

For defect correlations, however, a direct transformation of(2@). yields a rather intractable expression. Therefore, we first
rewrite Eq.(20) using the identitwhich can be verified by differentiation

4ty -
ei(titw)ln(t_tw):ei(tﬂw)ln(t+tw)_ f dT%e T[I n71_2|n+|n+1](7)v

W

as

t+ty,
dTef(tther 7)

ty

1
Cn(tatw):eiz(tﬂw)[lﬁ_In—1|n+1](t+tw)+§f

X{[Th—1= T+ 2 l(D) [T n—1— s (T + 1)

_[In—1_2|n+|n+1](7')[|n—1+2|n+|n+1](t+tw)}'

Now, utilizing Eq.(A2) and expressing factors ofas derivatives with respect tq the Fourier series fo€(k;t,t,) may be
written in the form

; 1 [t+t
C(k;t,tw):eiz(t“W)E eimk[lﬁ_|n71|n+1](t+tw)_ EJ' WdTe*(tthWJrT)
n t

,tw

4 &2 2 —ink
X T(T’[W)% - e In(T)In(t+tw)

+2({%_1)2 e ™M (D11t 2In+ln+1](t+tw>] :

All summations in this expression can be evaluated via E&S) and (A6). Some fairly complicated algebra is required to
simplify the resulting expression, but finally one obtains the compact result

Il( 2(t+tw)cos;

t
C(k;t,t,)=e 2+t +4f “dre200
0

k

A
(t+ty) co%

1 tw— T 2 k tw— 7
Kll(ZA)-I—Z A Si (E)(Il(ZA)-I— |2(2A)) , (B3)

whereA= /(t+ 7)? cos(k/2) + (t,,— 7)? sirf(k/2). Equation(B3) is the most convenient representation &{k;t,t,,), both for
numerical and analytical purposes. The calculation of the Fourier transform of the defect susceffbilisycomparatively
easy; from Eqs(A5) and (A6), one finds

t cog(k/2) +t,, sir?(k/2)
- A 11(2A) ¢, (B4)

x(kit,tw)=2e" 2 [1g+13](2t) — 1o(2A)

with A= \t? cog(k/2)+ 12 sirP(k/2).
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APPENDIX C: POWER-LAW COVARIANCES

Here we show that the covarianags,, given in Eq.(25)
follow a power law asn|— and establish the linkjp,,
=F Uqp(k)}. Let us first focus on the Fourier integi@?2)
which—sinceqp(k) is even ink—may be written as

r2 l+a
2 f2wdk AL
QP,n—m o 27| SiNy]  codnk), (C1)

where O<a<1 as before. The simple substitutior=k/2
yields the solvable integrd#2]

fwdx e o8 T (—1)"
e (sinx) COS ix= - 1+ a Tra
a2 "B T+n,T—n

(C2

Using the functional relation42] B(x,y)=1"(x)I"(y)/I"(x
+vy) for the beta functiorB(x,y) and simplifying the re-
maining expression yield the result fgg , given in Eq.(25).
Now we turn to the asymptotic behavior Qf , as|n|—o.
For n=1 we may rewrite gp,, using I'(x)I'(1—x)
=qg/sinmx andI'(x+1)=xI"(x), in the form

n1 1—a+2k

Opn= H

o 1+ a+2k’ €3

PHYSICAL REVIEW E 68, 016116 (2003

It is obvious from Eq.(C3) that gp, is monotonically de-
creasing and vanishes far—« as long asa>0. It is

equally clear thatyp,=1 for «—0 and gp,=5,0 as a

—1 (sinceqp,, is even inn andgp =1V a). In order to
understand the asymptotic behavior @f,, we take the
logarithm of Eq.(C3) and use the bounds

n—1

n n—-1
f dka,< >, aksao+f dkay, (C4)
0 k=0 0

which hold for any nonincreasing functiay. For the case
at hand, the integrals can be solved easily. Exponentiating
the result, multiplying byn®, and taking the limih— oo then

give
(Ze)*a w< lim naq
V(1+a)tte o T

(1+a)t @

$(29)7 (1_a)1+a'

(CH

which implies that there exists a finite constansuch that
Opn~cn” * for 0<a<l.
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